Abstract:
An angle measurement system for measuring angles of incidence for ion beams during ion implantation includes a varied angle slot array and an array of charge measurement devices located downstream of the varied angle slot array. The varied angle slot array includes slots formed within a structure from an entrance surface to an exit surface. Each of the slots has a varied acceptance angle range. The array of charge measurement devices are individually associated with the slots and can measure charge or beam current for beamlets that pass through the slots. These measurements and the varied or different acceptance angle ranges can then be employed to determine a measured angle of incidence and/or angular content for an ion beam.
Abstract:
An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
Abstract:
One or more aspects of the present invention pertain to a measurement component that facilitates determining a relative orientation between an ion beam and a workpiece. The measurement component is sensitive to ion radiation and allows a relative orientation between the measurement component and the ion beam to be accurately determined by moving the measurement component relative to the ion beam. The measurement component is oriented at a known relationship relative to the workpiece so that a relative orientation between the workpiece and beam can be established. Knowing the relative orientation between the ion beam and workpiece allows the workpiece to be oriented to a specific angle relative to the measured beam angle for more accurate and precise doping of the workpiece, which enhances semiconductor fabrication.
Abstract:
Method and apparatus for use in setting up workpiece treatment or processing equipment. A disclosed system processes silicon wafers that are treated during processing steps in producing semiconductor integrated circuits. The processing equipment includes a wafer support that supports a wafer in a treatment region during wafer processing. A housing provides a controlled environment within the housing interior for processing the wafer on the wafer support. A mechanical transfer system transports wafers to and from the support. A wafer simulator is used to simulate wafer movement and includes a pressure sensor for monitoring contact between the simulator and the wafer transfer and support equipment. In one illustrated embodiment the wafer simulator is generally circular and includes three equally spaced pressure sensors for monitoring contact with wafer transport and support equipment.
Abstract:
An electrostatic clamp for securing a semiconductor wafer during processing. The electrostatic clamp includes a base member, a first dielectric layer, a second dielectric layer having a gas pressure distribution micro-groove network formed therein, a gas gap positioned between a backside of a semiconductor wafer and the second dielectric layer, and a pair of high voltage electrodes positioned between the first dielectric layer and the second dielectric layer.
Abstract:
The present invention is directed to a scanning apparatus and method for processing a substrate, wherein the scanning apparatus comprises a first link and a second link rigidly coupled to one another at a first joint, wherein the first link and second link are rotatably coupled to a base portion by the first joint, therein defining a first axis. An end effector, whereon the substrate resides, is coupled to the first link. The second link is coupled to a first actuator via at least second joint. The first actuator is operable to translate the second joint with respect to the base portion, therein rotating the first and second links about the first axis and translating the substrate along a first scan path in an oscillatory manner. A controller is further operable to maintain a generally constant translational velocity of the end effector within a predetermined scanning range.
Abstract:
A system, apparatus, and method for determining position and two angles of incidence of an ion beam to a surface of a workpiece is provided. A measurement apparatus having an elongate first and second sensor is coupled to a translation mechanism, wherein the first sensor extends in a first direction perpendicular to the translation, and wherein the second sensor extends at an oblique angle to the first sensor. The first and second elongate sensors sense one or more characteristics of the ion beam as the first and second sensors pass through the ion beam at a respective first time and a second time, and a controller is operable to determine a position and first and second angle of incidence of the ion beam, based, at least in part, on the one or more characteristics of the ion beam sensed by the first sensor and second sensor at the first and second times.
Abstract:
The present invention is directed to a scanning apparatus and method for processing a substrate, wherein the scanning apparatus comprises a base portion and a rotary subsystem. The rotary subsystem comprises a first link comprising a first joint, wherein the first link is rotatably coupled to the base portion by the first joint, and a second link comprising a second joint, wherein the second link is rotatably coupled to the first link by the second joint. The first joint and the second joint are spaced a predetermined distance from one another. The second link further comprising an end effector whereon the substrate resides, and wherein the end effector is operably coupled to the second link. The end effector is further spaced from the second joint by the predetermined distance, wherein a rotation of the first link and second link in a respective first direction and second direction is operable to linearly oscillate the end effector along a linear first scan path, and wherein the rotational velocity of the first link and second link does not cross zero.
Abstract:
The present invention is directed to implanting ions in a workpiece in a serial implantation process in a manner that produces one or more scan patterns on the workpiece that resemble the size, shape and/or other dimensional aspects of the workpiece. Further, the scan patterns are interleaved with one another and can continue to be produced until the entirety of the workpiece is uniformly implanted with ions.
Abstract:
Angular electrostatic filters and methods of filtering that remove energy contaminants from a ribbon shaped ion beam are disclosed. An angular electrostatic filter comprises a top deflection plate and a bottom deflection plate extending from an entrance side to an exit side of the filter. The bottom deflection plate is substantially parallel to the top deflection plate and includes an angle portion. An entrance focus electrode is positioned on the entrance side of the filter and an exit focus electrode is positioned on the exit side of the filter and both serve to focus the ion beam. Edge electrodes are positioned between the top and bottom deflection plates and at sides of the filter to mitigate edge effects. A negative bias is also applied to the top and bottom plates to mitigate space charge by elevating the beam energy.