Abstract:
The invention provides a vehicle that can deliver drugs specifically to the body and a pharmaceutical preparation using the same. Disclosed is a drug delivery vehicle for cancer therapy, comprising a cationized viral envelope vector, as well as a pharmaceutical preparation comprising a drug enclosed in the vehicle. The viral envelope vector is for example HVJ-E derived from a Sendai virus, and cationization can be conducted by binding hyaluronic acid-introduced cationized gelatin or ethylene glycol-introduced cationized gelatin with the viral envelope vector. The drug to be enclosed is a nucleic acid, a vector containing a nucleic acid sequence, a protein based drug or pharmaceutical with a low-molecular compound.
Abstract:
Disclosed is a carbon material, such as a carbon nanotube, into which a boron atom and/or a phosphorus atom is/are introduced while maintaining its characteristic structures and functions and a method for producing the same. The carbon material of the present invention is one in which a boron atom and/or a phosphorus atom is/are introduced into part of carbon atoms composing the carbon material, and can be produced by a method for producing a carbon material including the steps of: bringing a carbon material into contact with a fluorination treatment gas containing a fluorine-containing gas, thereby subjecting a surface of the carbon material to fluorination treatment; and bringing the carbon material after the fluorination treatment into contact with a boronization treatment gas containing a boron-containing gas, thereby subjecting to boronization treatment and/or into contact with a phosphorization treatment gas containing a phosphorus-containing gas, thereby subjecting to phosphorization treatment.
Abstract:
A red phosphor that has optical characteristics and durability under high-temperature and high-humidity environments, and a method for producing the same. The red phosphor includes a Mn-activated complex fluoride represented by the following general formula (1) and bismuth:
A2MF6:Mn4+ (1)
wherein A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents at least one tetravalent element selected from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium.
Abstract:
Provided are a cell culture member having excellent cell culture performance and its long-term stability, and a method for modifying the surface thereof. The cell culture member according to the present invention is a cell culture member having at least a holding region that holds an adherent cell and contains a polymer compound, wherein at least a part of the holding region is a surface-modified region in which a functional group containing a nitrogen atom is directly chemically bonded to a part of carbon atoms and/or silicon atoms constituting the polymer compound, and the present invention can provide a cell culture member that improves adhesiveness of the adherent cell to the surface-modified region, suppresses deterioration over time of adhesiveness, and is excellent in cell culture performance and its long-term stability.
Abstract:
Provided are a cell culture member having excellent cell culture performance and its long-term stability, and a method for modifying the surface thereof. The cell culture member according to the present invention is a cell culture member having at least a holding region that holds an adherent cell and contains a polymer compound, wherein at least a part of the holding region is a surface-modified region in which a fluorine atom is directly chemically bonded to a part of carbon atoms and/or silicon atoms constituting the polymer compound, and the present invention can provide a cell culture member that improves adhesiveness of the adherent cell to the surface-modified region, suppresses deterioration over time of adhesiveness, and is excellent in cell culture performance and its long-term stability.
Abstract:
A micromachining processing agent and a micromachining processing method capable of selectively micromachining a silicon oxide film when a laminated film including at least a silicon nitride film, a silicon oxide film, and a silicon alloy film is micromachined. The micromachining processing agent is used for micromachining of a laminated film including at least a silicon oxide film, a silicon nitride film, and a silicon alloy film. The micromachining processing agent contains: (a) 0.01 to 50 mass % of hydrogen fluoride; (b) 0.1 to 40 mass % of ammonium fluoride; (c) 0.001 to 10 mass % of a water-soluble polymer; (d) 0.001 to 1 mass % of an organic compound having a carboxyl group; and (e) water as an optional component, in which the water-soluble polymer is at least one selected from a group consisting of acrylic acid, ammonium acrylate, acrylamide, styrenesulfonic acid, ammonium styrenesulfonate, and styrenesulfonic acid ester.
Abstract:
Provided are a liquid dispersion of fluoride particles, which has low viscosity and excellent dispersibility, and is suitable for producing an optical film such as an antireflection film; a method for producing the same; and an optical film using the same. The liquid dispersion of fluoride particles according to the present invention is that in which particles of a fluoride represented by the chemical formula AxCFy (wherein A represents sodium or potassium, C represents silicon or boron, x is 1 or 2, and y is 4 or 6) are dispersed in an aprotic organic solvent having a relative permittivity of 5 to 40, and the optical film according to the present invention is produced by using the liquid dispersion of fluoride particles.
Abstract:
A non-aqueous electrolytic solution includes a phosphoric acid diester salt, which can suppress deterioration of charge-discharge characteristics of a power storage element, and can suppress the rise in internal resistance after storage at high temperature. The phosphoric acid diester salt is represented by the following chemical formula (1): in which Mn+ represents a hydrogen ion, an alkali metal ion, an alkali earth metal ion, an aluminum ion, a transition metal ion, or an onium ion, R1 and R2 are different from each other and represent a hydrocarbon group having 1 to 10 carbon atoms, or a hydrocarbon group having 1 to 10 carbon atoms and having at least one of a halogen atom, a heteroatom, and an unsaturated bond, and n represents a valence.
Abstract:
A cross-linked structure of a carbon material is excellent in mechanical strength, such as tensile strength. The carbon materials such as carbon nanotube, graphite, fullerene, and carbon nanocoil, are cross-linked with each other. The carbon materials are cross-linked through a linking group derived from a nucleophilic compound having two or more nucleophilic groups in the molecule.