摘要:
An object of the present invention is to provide a cell structure for brain damage treatment which does not contain glutaraldehyde and in which it is possible to exhibit a sufficient effect of treating brain damage, a production method thereof, and a brain damage treatment agent. According to the present invention, there is provided a cell structure for brain damage treatment which contains biocompatible macromolecular blocks and at least one kind of cell and in which a plurality of the biocompatible macromolecular blocks are disposed in gaps between a plurality of the cells, in which the tap density of the biocompatible macromolecular block is 10 mg/cm3 to 500 mg/cm3 or a value obtained by dividing a square root of a cross-sectional area in a two-dimensional cross-sectional image of the biocompatible macromolecular block by a peripheral length is 0.01 to 0.13.
摘要:
The present invention is a natural, cell-free tissue replacement that does not require difficult or extensive preparation made by washing tissue replacement in a solution including one or more sulfobetaines and an anionic surface-active detergent and washing the tissue replacement in serial solutions of the buffered salt to remove excess detergent. The natural, cell-free tissue replacement may be a nerve graft that supports axonal regeneration, guides the axons toward the distal nerve end and/or is immunologically tolerated. Other forms of the invention are a composition and kit prepared by the method of making a native, cell-free tissue replacement. The present invention may be modified for use in diagnostic, therapeutic, and prophylactic applications.
摘要:
The invention relates to scaffold-free three dimensional nerve fibroblast constructs and method of generating the nerve fibroblast constructs. The invention also relates to methods or repairing nerve transection and replacing damaged nerve tissue using the nerve fibroblast constructs of the invention.
摘要:
An object of the present invention is to provide a method for efficiently and reproducibly producing a graft material having a high recovery effect on dysfunction caused by nerve damage. The present invention provides a method for producing a graft material for treating nerve damage, including a step of culturing a dental pulp stem cell in a medium substantially containing no growth factors except FGF2, and others.
摘要:
Devices and methods for the treatment of open and closed wound spinal cord injuries are disclosed. For example, described herein are devices and methods for mitigating secondary injury to, and promoting recovery of, spinal cord primary injuries. More particularly, certain embodiments of the present invention are directed to polymeric mini-tubes that may be used for the treatment of spinal cord injuries. In addition, other embodiments are directed to polymeric “fill-in” bandages that may be used for the treatment of spinal cord injuries. For example, an erodible, or biodegradable, form of biocompatible polymer of the present invention is fabricated for surgical implantation into the site of the spinal cord injury.
摘要:
A material for treatment of cerebral infarction ameliorates angiopathy at a cerebral infarction region and improves brain function. The material for treatment of cerebral infarction according to the present invention comprises a dental pulp stem cell including at least one of a CD105-positive cell, an SP cell, a CD24-positive cell, a CD271-positive cell, and a CD150-positive cell. The material for treatment of cerebral infarction according to the present invention may contain a secretory protein of the dental pulp stem cell. Transplanted dental pulp stem cells do not directly differentiate into neural progenitor cells or neural cells and indirectly participate in the promotion of differentiation to restore and cure a cerebral infarction region such that the region becomes normal.
摘要:
A method for making a nerve graft includes the following steps. A culture layer including a carbon nanotube film structure and a protein layer is provided. The protein layer is located on a surface of the carbon nanotube film structure. A number of nerve cells are seeded on a surface of the protein layer away from the carbon nanotube film structure. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
摘要:
In one aspect, nerve growth inhibition devices are described herein. In some embodiments, a nerve growth inhibition device described herein comprises a tube having a proximal end and a distal end. A matrix material is disposed in the tube, and the matrix material comprises one or more microchannels. The proximal end of the tube comprises an opening operable to receive nerve tissue, the distal end of the tube is sealed, and the microchannels of the matrix material extend from the proximal end of the tube toward the distal end of the tube.
摘要:
Devices and methods for the treatment of open and closed wound spinal cord injuries are disclosed. For example, described herein are devices and methods for mitigating secondary injury to, and promoting recovery of, spinal cord primary injuries. More particularly, certain embodiments of the present invention are directed to polymeric mini-tubes that may be used for the treatment of spinal cord injuries. In addition, other embodiments are directed to polymeric “fill-in” bandages that may be used for the treatment of spinal cord injuries. For example, an erodible, or biodegradable, form of biocompatible polymer of the present invention is fabricated for surgical implantation into the site of the spinal cord injury.
摘要:
The invention relates to the use of viral inactivated-plasma cryoprecipitate concentrate (VIPCC) comprising a suitable fibronactin/fibrinogen ratio for treating a spine disease, disorder or condition such as intervertebral disc degeneration.