Abstract:
Compositions comprising copolymers of ethylene and an ester of an unsaturated alcohol and a carboxylic acid having at least 3 carbon atoms improve the low temperature properties of fuel oils.
Abstract:
A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system. which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g. The addition of the alkylaluminoxane during the polymerization process provides for a non-crystalline, ultra-high molecular weight polyalphaolefin and a more uniform molecular weight distribution of the resulting polyalphaolefin, thereby creating a drag reducing agent superior to known drag reducing agents. A process for forming a drag reducing agent comprising a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of about at least 10 dL/g and a process for reducing drag in a conduit are also disclosed.
Abstract:
Ethylene copolymers with alpha-olefins utilizable as additives to increase the properties of middle distillates at low temperatures, obtainable by polymerization in the presence of catalysts comprising the reaction product between: 1) a bis-cyclopentadienyl derivative having the general formula: (Cp1Cp2)—M—(L2L3) containing groups with oxygen bound to the transition metal, wherein M is a metal from the IIIb group to the IIb group or of the lanthanides series of the periodic table of the elements; 2) a co-catalyst chosen from alumoxanes or boranes.
Abstract:
A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g. The addition of the alkylaluminoxane during the polymerization process provides for a non-crystalline, ultra-high molecular weight polyalphaolefin and a more uniform molecular weight distribution of the resulting polyalphaolefin, thereby creating a drag reducing agent superior to known drag reducing agents. A process for forming a drag reducing agent comprising a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of about at least 10 dL/g and a process for reducing drag in a conduit are also disclosed.
Abstract:
A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alphaolefin monomers with catalyst particles in a polymerization mixture that includes a hydrocarbon solvent. The polymerization of the alphaolefin monomers produces polyalphaolefin drag reducing agents having an inherent viscosity of at least 10 dL/g. During polymerization of the polyalphaolcfin monomers, localized micelles compromising high molecular weight polyalphaolefin polymer are formed in micellar zones around the catalyst particles. The polymerization is conducted in the presence of a viscosity reducing agent that includes a substantially hydrophobic dispersant. The viscosity reducing agent is present in an amount sufficient to reduce the viscosity of the reaction mixture and disperse the localized micelles. The addition of the dispersant during the polymerization process provides for high molecular weight polyalphaolefin and a more uniform molecular weight distribution of the resulting polyalphaolefin. A process of forming a polyalphaolefin drag reducing agent in one or more polymerization reactors and a process for reducing drag in a conduit are also disclosed.
Abstract:
A polymeric substance, i.e. poly(isomerized C.sub.12 -C.sub.50 monoolefin), alone or as the alkylation derivative of an aromatic compound in combination with a lubricating oil pour depressant having pendant alkyl groups of 6 to 32 carbon atoms are useful in improving the cold flow properties of distillate hydrocarbon oils.
Abstract:
Oil-soluble combinations of (A) ethylene polymer or copolymer, (B) normal paraffinic wax composed of normal hydrocarbons whose average molecular weight is within the range of from 300 to 650, and (C) nitrogen compounds, such as amides, amine salts and ammonium salts, of carboxylic acids or anhydrides, are useful in improving the cold flow properties of distillate hydrocarbon fuel oils. Preferably, the wax contains n-paraffins ranging from C.sub.23 to C.sub.37 inclusive. If desired, the combination can be usefully stabilized by the addition of one or more compatibility additives, i.e. a polymer having alkyl side chains of 6 to 30 carbon atoms and derived from carboxylic acid esters and/or olefins or C.sub.8 -C.sub.18 alkanol, e.g. tridecyl alcohol or mixtures of said polymer and alkanol.
Abstract:
Certain high boiling (e.g. above 600.degree. F) fuel oils, such as atmospheric residua fuel oils, and vacuum distillate fuels, e.g., flash distillate oils, vacuum bottoms, and various fuel blends containing said oils, which are deficient in an asphaltene component can be made more responsive to polymeric flow improvers by treating them with certain asphaltene materials. These asphaltene materials may be added either directly to the oil or first combined with the flow improver and the combination added to the oil. The polymeric flow improvers are polymers having long linear side chains. The asphaltene materials added to the oil, will generally have a heptane precipitatable asphaltene content of 5 to 100% by weight and can either be asphaltenes per se, or an oil fraction high in asphaltenes.