Abstract:
Techniques for reducing the number of shots required by a radiation beam writing tool to write a pattern, such as fractured layout design, onto a substrate. One or more apertures are employed by a radiation beam writing tool to write a desired pattern onto a substrate using L-shaped images, T-shaped images, or some combination of both. By reducing the number of shots required to write a pattern onto a substrate, various implementations of the invention may reduce the write time and/or write complexity of the write process.
Abstract:
A reticle is provided. The reticle comprises a substrate having at least a first region and a second region; and an organic layer aligned in certain directions by an irradiation of a polarized UV light formed on a surface of the substrate. Wherein the organic layer in the first region has a first polarization direction; the organic layer in the second region has a second polarization direction; and the first polarization direction and the second polarization direction have a predetermined angle.
Abstract:
A mask manufacturing apparatus includes a laser irradiator, a stage, a frame, and a heat spreader sheet. The laser irradiator divides a laser beam into a plurality of sub-laser beams and irradiates the sub-laser beams to a shadow mask material which is placed over a stage. The frame is disposed over the stage to support the shadow mask material. The heat spreader sheet makes contact with the shadow mask material, absorbs heat generated from the shadow mask material, and dissipates the heat to surroundings of the shadow mask material. Accordingly, the shadow mask material is protected from overheating.
Abstract:
A method of forming a mask for semiconductor fabrication is disclosed. The method includes providing a substrate and forming a first reflective layer over the substrate, wherein the first reflective layer comprises pairs of alternating materials. The method further includes forming a buffer layer over the first reflective layer and forming a second reflective layer over the buffer layer. The second reflective layer has a total thickness less than 90 nanometer (nm). The method further includes patterning the second reflective layer to form a first state and a second state of the mask. A first reflection coefficient of the first state and a second reflection coefficient of the second state have a phase difference of about 180 degrees.
Abstract:
Various non-planar reflective lithography masks, systems using such lithography masks, and methods are disclosed. An embodiment is a lithography mask comprising a transparent substrate, a reflective material, and a reticle pattern. The transparent substrate comprises a curved surface. The reflective material adjoins the curved surface of the transparent substrate, and an interface between the reflective material and the transparent substrate is a reflective surface. The reticle pattern is on a second surface of the transparent substrate. A reflectivity of the reticle pattern is less than a reflectivity of the reflective material. Methods for forming similar lithography masks and for using similar lithography masks are disclosed.
Abstract:
The present disclosure discloses a mask plate and processes for manufacturing an ultraviolet mask plate and an array substrate. The present disclosure relates to the field of display technology and can reduce costs for manufacturing ultraviolent mask plates. The mask plate comprises a transparent area, a semi-transparent area, and a non-transparent area, wherein the transparent area and the non-transparent area correspond to a frame glue area and a layer pattern area of a liquid crystal display panel, respectively, and other regions of the mask plate constitute said semi-transparent area. The present disclosure can be used in the manufacture of display devices of liquid crystal display televisions, liquid crystal displays, mobile phones, tablet computers, etc.
Abstract:
An optical mask, including: a photothermal conversion layer configured to convert optical energy into thermal energy; and an adiabatic pattern layer disposed on the photothermal conversion layer, wherein the photothermal conversion layer includes a thermal acid generator configured to generate an acid in response to the thermal energy.
Abstract:
The present disclosure discloses a mask plate and processes for manufacturing an ultraviolet mask plate and an array substrate. The present disclosure relates to the field of display technology and can reduce costs for manufacturing ultraviolent mask plates. The mask plate comprises a transparent area, a semi-transparent area, and a non-transparent area, wherein the transparent area and the non-transparent area correspond to a frame glue area and a layer pattern area of a liquid crystal display panel, respectively, and other regions of the mask plate constitute said semi-transparent area. The present disclosure can be used in the manufacture of display devices of liquid crystal display televisions, liquid crystal displays, mobile phones, tablet computers, etc.
Abstract:
Any defects in the reflective multilayer coating or absorber layer of an EUV mask are problematic in transferring a pattern of the EUV mask to a wafer since they produce errors in integrated circuit patterns on the wafer. In this regard, a method of manufacturing an EUV mask is provided according to various embodiments of the present disclosure. To repair the defect, a columnar reflector, which acts as a Bragg reflector, is deposited according to various embodiments so as to locally compensate and repair the defect. According to the embodiments of the present disclosure, the reflective loss due to the defect can be compensated and recover the phase different due to the defect from, so as to form a desirable wafer printed image.
Abstract:
A display panel and a manufacturing method thereof, a mask and a manufacturing method thereof, and a display device. The display panel includes a first display substrate and a second display substrate arranged to be opposed to each other, and main spacers and assistant spacers arranged between the first display substrate and the second display substrate. The main spacers and the assistant spacers are both arranged on the first display substrate. The main spacers have a height equal to a distance from the first display substrate to the second display substrate to support the first display substrate and the second display substrate. The assistant spacers have a height smaller than that of the main spacers. An end surface of a suspending end of at least one of the assistant spacers is planar and/or an end surface of a suspending end of at least one of the assistant spacers is convex.