Abstract:
A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
Abstract:
A dielectric glass composition suitable for use in an electronic device which comprises a sufficient amount of silicon dioxide to impart durability to the glass composition when subject to a humid environment, and one or more alkali metal oxides, wherein (i) the total content of the alkali metal oxides is at least about 10 wt % and no more than about 35 wt %, based upon 100% total weight of the glass composition, (ii) the median particle size (d50) of the glass composition is no more than about 5 μm, and (iii) the glass composition has a coefficient of thermal expansion of at least about 10 ppm/K and no more than about 25 ppm/K, is provided.
Abstract:
A first ceramic layer of a composite laminate included in a common mode choke coil is formed from a sintered body of a glass ceramic material. The glass ceramic material contains 40 to 90 percent by weight of a glass which contains 0.5 to 5 percent by weight of K2O, 0 to 5 percent by weight of Al2O3, 10 to 25 percent by weight of B2O3, and 70 to 85 percent by weight of SiO2; and 10 to 60 percent by weight of a filler containing alumina and quartz, and the content of the alumina contained in the filler is 1 to 10 percent by weight of the total amount of the glass and the filler.
Abstract:
A device and method for providing electrical energy storage of high specific energy density. The device contains one or more layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The device includes additional insulating layers including carbon, such as carbon formed into diamond or a diamond-like arrangement for providing between the electrodes and the dielectric layer to provide for very high breakdown voltages. The layers can be created by a variety of methods including laser deposition and assembled to form a capacitor device provides the high energy density storage.
Abstract:
The present invention relates to a multi-layered aluminum oxide capacitor comprising an aluminum substrate; a plurality of aluminum oxide layer formed in at least a portion of on both sides or one side of the substrate with respect to the aluminum substrate; and a plurality of electrode layers formed on the aluminum oxide layers. According to the present invention, manufacturing process is more simplified since Al2O3 insulation layer is formed by anodizing the aluminum layer without forming an extra insulation layer after forming the aluminum layer, so that the manufacturing cost can be reduced, and also a multi-layered capacitor having a high capacitance and a high reliability can be provided by stacking capacitors comprising a plurality of aluminum oxide layers using a more simplified process according to the present invention.
Abstract translation:本发明涉及包含铝基板的多层氧化铝电容器; 多个氧化铝层,相对于铝基板在基板的两侧或一侧的至少一部分上形成; 以及形成在氧化铝层上的多个电极层。 根据本发明,由于通过在形成铝层之后不形成额外的绝缘层来阳极氧化铝层来形成Al 2 O 3绝缘层,所以制造工艺更简化,从而可以降低制造成本,并且还可以使用多层电容器 可以通过使用根据本发明的更简化的工艺堆叠包含多个氧化铝层的电容器来提供高电容和高可靠性。
Abstract:
A device and method for providing electrical energy storage of high specific energy density. The device contains a plurality of layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The device includes additional insulating layers, such as Diamond Like Carbon Coating, between the electrodes that provide for very high breakdown voltages. Layers are created by a variety of methods and assembled to form the device that is the High Energy Density Storage Device.