Abstract:
Provided are a plurality of embodiments, including, but not limited to, a device for generating efficient low and high average power output Gamma Rays via relativistic particle bombardment of element targets using an efficient particle injector and accelerator at low and high average power levels suitable for element transmutation and power generation with an option for efficient remediation of radioisotope release into any environment. The devices utilize diamond or diamond-like carbon materials and active cooling for improved performance. Also provided are a nuclear reactor and a decontamination device using such a device.
Abstract:
A slab laser and its method of use for high power applications including the manufacture of semiconductors and deposition of diamond and/or diamond-like-carbon layers, among other materials. A lamp driven slab design with a face-to-face beam propagation scheme and an end reflection that redirects the amplified radiation back out the same input surface is utilized. A side-to-side amplifier configuration permitting very high average and peak powers having scalability is also disclosed. Cavity filters adjacent to pump lamps convert the normally unusable UV portion of the pump lamp spectrum into light in the absorption band of the slab laser, thereby increasing the overall pump efficiency. The angle of the end reflecting surface is changed to cause the exit beam to be at a different angle than the inlet beam, thereby eliminating the costly need to separate the beams external to the laser with the subsequent loss of power.
Abstract:
Provided are a plurality of embodiments, including, but not limited to, a device for generating efficient low and high average power output Gamma Rays via relativistic particle bombardment of element targets using an efficient particle injector and accelerator at low and high average power levels suitable for element transmutation and power generation with an option for efficient remediation of radioisotope release into any environment. The devices utilize diamond or diamond-like carbon materials and active cooling for improved performance.
Abstract:
A laser for high power applications. The laser is a lamp driven slab design with a face to face beam propagation scheme and an end reflection that redirects the amplified radiation back out the same input surface. Also presented is a side to side larger amplifier configuration, permitting very high average and peak powers due to the electrical efficiency of absorbing energy into the crystal, optical extraction efficiency, and scalability of device architecture. Cavity filters adjacent to pump lamps convert the unusable UV portion of the pump lamp spectrum into light in the absorption band of the slab laser thereby increasing the overall pump efficiency. The angle of the end reflecting surface is changed to cause the exit beam to be at a different angle than the inlet beam, thereby eliminating the costly need to separate the beams external to the laser with the subsequent loss of power.
Abstract:
A device and method for providing electrical energy storage of high specific energy density. The device contains a plurality of layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The device includes additional insulating layers, such as Diamond Like Carbon Coating, between the electrodes that provide for very high breakdown voltages. Layers are created by a variety of methods and assembled to form the device that is the High Energy Density Storage Device.
Abstract:
An engine configuration that uses multiple opposing piston pairs to form respective expansion chambers for expanding a gas within to move the pistons to drive a main shaft. The engine can be configured to operate as an internal combustion engine that uses diesel fuel, gasoline, or natural gas, or it can be configured as an expander to convert high pressure high temperature gas to rotary power. The pistons may be mounted on the circumference of one or more disks. For any given set of choices of numbers of pistons and sizes of pistons, disks, and gears, there are disclosed dimensional constraints useful for more efficient functioning of the engine. This engine can be provided with a compact design which results in high power to weight ratios.
Abstract:
A Plasma Arc Reformer for creating a useful fuel, such as Methanol, using any of Methane, Municipal Solid Waste, farm or forest waste, coal orchar rock from oil shale production, petrochemical hydrocarbons, (any carbon containing charge), water, and/or Municipal Sewage, as the source material. A High temperature Plasma Arc de-polymerizes the source material into atoms which, upon partial cooling, creates a gas stream rich in CO and H2 (syngas). Subsequent molecular filter and catalyst stages in the system remove contaminants and produce the output fuel. The system is closed loop with regard to the syngas production in that it recycles the residual unconverted gas and even the exhaust gases if desired. The large amount of heat produced is captured and converted to electric power using a supercritical CO2 Rankin cycle resulting in potentially high efficiencies.
Abstract:
An energy storage device for providing electrical energy storage of high specific energy density for use in consumer and commercial devices and for storing power to be provided to an electrical power grid. An example of the energy storage device has a plurality of layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The example device includes additional insulating layers, such as Diamond-Like Carbon Coating, between the electrodes that provide for very high breakdown voltages.
Abstract:
A slab laser and its method of use for high power applications including the manufacture of semiconductors and deposition of diamond and/or diamond-like-carbon layers, among other materials. A lamp driven slab design with a face-to-face beam propagation scheme and an end reflection that redirects the amplified radiation back out the same input surface is utilized. A side-to-side amplifier configuration permitting very high average and peak powers having scalability is also disclosed. Cavity filters adjacent to pump lamps convert the normally unusable UV portion of the pump lamp spectrum into light in the absorption band of the slab laser, thereby increasing the overall pump efficiency. The angle of the end reflecting surface is changed to cause the exit beam to be at a different angle than the inlet beam, thereby eliminating the costly need to separate the beams external to the laser with the subsequent loss of power.
Abstract:
A device and method for providing electrical energy storage of high specific energy density. The device contains one or more layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The device includes additional insulating layers including carbon, such as carbon formed into diamond or a diamond-like arrangement for providing between the electrodes and the dielectric layer to provide for very high breakdown voltages. The layers can be created by a variety of methods including laser deposition and assembled to form a capacitor device provides the high energy density storage.