Abstract:
Embodiments of a system and method for providing dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) transmission with enhanced physical downlink control channels are generally described herein. In some embodiments, a receiver is arranged to receive, on an enhanced physical downlink control channel (ePDCCH), one of a lowest control channel element index (nCCE) and a lowest enhanced control channel element index (neCCE), a user equipment specific starting offset (NPUCCH(1)) and at least one additional offset-related parameter. A processor determines allocation of an uplink resource of a physical uplink control channel (PUCCH) for HARQ-ACK transmission based the one of a lowest control channel element index (nCCE) and a lowest enhanced control channel element index (neCCE), the user equipment specific starting offset (NPUCCH(1)) and at least one selected from the at least one additional offset-related parameter. A transmitter transmits a signal on the PUCCH using the allocated uplink resource.
Abstract:
Generally discussed herein are systems and apparatuses that can implement a Mobility State Estimation (MSE) of a User Equipment (UE) and techniques for using the MSE algorithms. According to an example technique to determine the MSE of a UE can include determining, using the UE, a maximum Reference Signal Received Power (RSRP) within a cell, determining, using the UE, a minimum RSRP within the cell, determining, using the UE, a difference between the maximum and minimum RSRP, and determining, using the UE, an MSE of the UE as a function of the determined difference.
Abstract:
A technology for an enhanced node B (eNode B) in a cellular network that is operable to determine downtilt using full dimensional (FD) multiple-input multiple-output (MIMO). A plurality of orthogonal frequency division multiple access (OFDMA) signals can be transmitted, wherein each transmitted OFDMA signal is transmitted with a selected downtilt angle from a two dimensional antenna array of the eNode B. Reference signal received power (RSRP) feedback information can be received from a UE for each of transmitted OFDMA signals at the selected downtilt angles. Received signal strength indicator (RSSI) feedback information can be received from the UE. A reference signal received quality (RSRQ) can be calculated for each of the selected antennas angles using the RSRP feedback information and the RSSI feedback information. A downtilt angle can be selected for transmitting data from the eNode B with a highest signal to interference plus noise ratio (SINR).
Abstract:
A method for controlling a wireless local area network (WLAN) bearer is provided. The method includes a base station receives information including at least one of WLAN information of a WLAN node, WLAN aggregation response information, WLAN aggregation update response information, WLAN aggregation update information and a WLAN capability of UE. According to the received information, the base station instructs the UE to perform traffic steering between an E-UTRAN and the WLAN, or instructs the UE to perform control processing for the EUTRAN and WLAN aggregation. By using the present disclosure, efficiency of WLAN bearer control is improved.
Abstract:
The present invention is a radio communication system in which a radio terminal obtains measurement information designated by a network in an idle state and reports the obtained measurement information in an active state, the radio communication system comprising: a radio station con to operate a first cell of a first Radio Access Technology, wherein, in the first cell, the radio station comprises; notifying means configured to notify the radio terminal of first configuration information related to obtainment of the measurement information in the first cell; and a request means configured to request the radio terminal to obtain, after the radio terminal moves to a second cell of a second Radio Access Technology different from the first Radio Access Technology, the measurement information in the second cell.
Abstract:
A mobile terminal, method and non-transitory computer-readable medium for simultaneously utilizing at least two different radio access technologies (RATs). In one embodiment, the mobile terminal includes: at least one processor configured to control and coordinate first and second radio resource control functions corresponding to first and second RATs, respectively; and map a logical channel to first and second transport channels corresponding to the first and second RATs.
Abstract:
Embodiments describe systems, methods, and apparatuses for identifying, based at least in part on an access network discovery and selection function (ANDSF) quality of service (QoS) policy, a preferred access point (AP) of a wireless local area network (WLAN). In some embodiments, the ANDSF QoS policy may be compared to one or more of an air-interface congestion parameter of the AP, and/or a backhaul congestion parameter of the AP.
Abstract:
One aspect of an apparatus for wireless communications is disclosed. The apparatus includes a controller, a first transceiver, and a second transceiver. The first transceiver is configurable by the controller to support first communications through a cellular network to at least one of a packet-based network and a circuit-switched network. The second transceiver configurable by the controller to operate with the first transceiver to support first communications through the cellular network in a first mode and support second communications through an access point to the packet-based network in a second mode. In an aspect, the second transceiver is further configured to switch from the first mode to the second mode by moving its wireless connection from the cellular network to the access point while maintaining a network-layer connection to the cellular network.
Abstract:
A method and apparatus for redirecting a wireless communication unit (113) from a LTE cell to a neighbouring 3G or 2G cell for the purposes of performing a procedure which is available in the 2G or 3G cell but not available in the LTE cell includes the provision of an additional LTE access point (109) within the coverage area of an LTE macrocell. The additional LTE access point (109) is arranged to capture a wireless communication unit (113) which is camped onto the LTE macrocell and redirect it to a 3G/2G cell irrespective of whether or not a better service may be provided in the 2G/3G cell. The invention has application to presence detection where collection of wireless communication units' and subscribers' IDs for such a purpose is possible in 3G and 2G cells but not in LTE cells.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating Wireless Local Area Network (WLAN) offloading information between cellular managers. For example, a first cellular manager of a first cellular network may send to a second cellular manager of a second cellular network one or more WLAN offload parameters corresponding to Radio Access Network (RAN) assisted WLAN interworking information, which is sent to one or more User Equipment (UE) in the first cellular network.