Abstract:
A system and method of plasma processing includes a plasma chamber including a substrate support and an upper electrode opposite the substrate support, the upper electrode having a plurality of concentric temperature control zones and a controller coupled to the plasma chamber.
Abstract:
Embodiments for processing a substrate in a pulsed plasma chamber are provided. A processing apparatus with two chambers, separated by a plate fluidly connecting the chambers, includes a continuous wave (CW) controller, a pulse controller, and a system controller. The CW controller sets the voltage and the frequency for a first radio frequency (RF) power source coupled to a top electrode. The pulse controller is operable to set voltage, frequency, ON-period duration, and OFF-period duration for a pulsed RF signal generated by a second RF power source coupled to the bottom electrode. The system controller is operable to set parameters to regulate the flow of species between the chambers to assist in the negative-ion etching, to neutralize excessive positive charge on the wafer surface during afterglow in the OFF period, and to assist in the re-striking of the bottom plasma during the ON period.
Abstract:
A method for detecting plasma unconfinement in a reaction chamber during a bevel edge cleaning operation is provided. The method initiates with selecting a wavelength associated with expected by products of a bevel edge clean process. The method includes cleaning the bevel edge area of a substrate and monitoring the intensity of the selected wavelengths during the cleaning for deviation from a threshold wavelength intensity. The cleaning is terminated if the deviation from the threshold wavelength intensity exceeds a target deviation.
Abstract:
A method for generating plasma for removing an edge polymer from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the edge polymer. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an RF field to the cavity using the powered electrode to generate the plasma from the inert gas and process gas.
Abstract:
A method for etching features in an etch layer. A conditioning for a patterned pseudo-hardmask of amorphous carbon or polysilicon disposed over the etch layer is provided, where the conditioning comprises providing a fluorine free deposition gas comprising a hydrocarbon gas, forming a plasma from the fluorine free deposition gas, providing a bias less than 500 volts, and forming a deposition on top of the patterned pseudo-hardmask. The etch layer is etched through the patterned pseudo-hardmask.
Abstract:
Methods for bevel edge etching are provided. One example method is for etching a film on a bevel edge of a substrate in a plasma etching chamber. The method includes providing the substrate on a substrate support in the plasma etching chamber. The plasma etching chamber has a top edge electrode and a bottom edge electrode disposed to surround the substrate support. Then flowing an etching process gas through a plurality of edge gas feeds disposed along a periphery of the gas delivery plate. The periphery of the gas deliver plate is oriented above the substrate support and the bevel edge of the substrate, and the flowing is further directed to a space between the top edge electrode and bottom edge electrode. And, flowing a tuning gas through a center gas feed of the gas delivery plate.
Abstract:
A method for etching a bevel edge of a substrate in a processing chamber is provided. The method includes flowing an inert gas into a center region of the processing chamber defined above a center region of the substrate and flowing a mixture of an inert gas and a processing gas over an edge region of the substrate. The method further includes striking a plasma in the edge region, wherein the flow of the inert gas and the flow of the mixture maintain a mass fraction of the processing gas substantially constant. A processing chamber configured to clean a bevel edge of a substrate is also provided.
Abstract:
The embodiments provide structures and mechanisms for removal of etch byproducts, dielectric films and metal films on and near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In an exemplary embodiment, a plasma processing chamber configured to clean a bevel edge of a substrate is provided. The plasma processing chamber includes a bottom electrode configured to receive the substrate, wherein the bottom electrode is coupled to a radio frequency (RF) power supply. The plasma processing chamber also includes a top edge electrode surrounding an insulating plate opposing the bottom electrode. The top edge electrode is electrically grounded. The plasma processing chamber further includes a bottom edge electrode surrounding the bottom electrode. The bottom edge electrode opposes the top edge electrode. The top edge electrode, the substrate disposed on the bottom electrode, and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate. The bottom edge electrode and the bottom electrode are electrically coupled to one another through an RF circuit tunable to adjust the amount of RF current going between the substrate disposed on the bottom electrode, the bottom edge electrode and the top edge electrode.
Abstract:
Improved mechanisms of removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and etch byproducts on substrate backside and chamber interior is provided to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. An exemplary plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode surrounding a substrate support in the plasma processing chamber, wherein the substrate support is configured to receive the substrate and the bottom edge electrode and the substrate support are electrically isolated from each other by a bottom dielectric ring. The chamber also includes a top edge electrode surrounding a gas distribution plate opposing the substrate support, wherein the top edge electrode and the gas distribution plate are electrically isolated from each other by a top dielectric ring, and the top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate.
Abstract:
An apparatus generating a plasma for removing fluorinated polymer from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the fluorinated polymer.