Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
A variable resistance memory device includes a variable resistance memory cell, and a by-pass circuit configured to electrically by-pass a programming pulse supplied to the variable resistance memory cell after a resistive state of the variable resistance memory cell has changed in response to the programming pulse.
Abstract:
A Resistance based Random Access Memory (ReRAM) can include a sense amplifier circuit that includes a first input coupled to a bit line of a reference cell in a first block of the ReRAM responsive to a read operation to a second block.
Abstract:
Provided is a semiconductor resistive memory device. The resistive memory device includes a plurality of unit cells. A source line and a data input/output line of the unit cells may be selectively connected to have a substantially same voltage level for equalization when the unit cells are in inactive or unselected state. The equalization may decrease current consumption and protect write error, and protect leakage current.
Abstract:
A semiconductor memory device including a plurality of layers each including a memory cell array and which are stacked over each other; and at least one power plane for supplying power to the layers. The power plane includes a region to which a power voltage is applied and a region to which a ground voltage is applied. The region to which a power voltage is applied is located adjacent to the region to which a ground voltage is applied, and forms a decoupling capacitor therebetween to decouple an influx of power noise to the layers or generation of power noise in the layers
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
A variable resistance memory device includes a variable resistance memory cell, and a by-pass circuit configured to electrically by-pass a programming pulse supplied to the variable resistance memory cell after a resistive state of the variable resistance memory cell has changed in response to the programming pulse.
Abstract:
Provided is a semiconductor device including a resistive memory element. The semiconductor device includes a substrate and the resistive memory element disposed on the substrate. The resistive memory element has resistance states of a plurality of levels according to generation and dissipation of at least one platinum bridge therein.
Abstract:
A multi-bit memory cell stores information corresponding to a high resistive state and multiple other resistive states lower than the high resistive state. A resistance of a memory element within the multi-bit memory cell switches from the high resistive state to one of the other multiple resistive states by applying a corresponding current to the memory element.