Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.
Abstract:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
Abstract:
Method, apparatus, and program means for a programmable event driven yield mechanism that may activate other threads. In one embodiment, an apparatus includes execution resources to execute a plurality of instructions and a monitor to detect a condition indicating a low level of progress. The monitor can disrupt processing of a program by transferring to a handler in response to detecting the condition indicating a low level of progress. In another embodiment, thread switch logic may be coupled to a plurality of event monitors which monitor events within the multithreading execution logic. The thread switch logic switches threads based at least partially on a programmable condition of one or more of the performance monitors.
Abstract:
In one embodiment, the present invention includes a method for directly communicating between an accelerator and an instruction sequencer coupled thereto, where the accelerator is a heterogeneous resource with respect to the instruction sequencer. An interface may be used to provide the communication between these resources. Via such a communication mechanism a user-level application may directly communicate with the accelerator without operating system support. Further, the instruction sequencer and the accelerator may perform operations in parallel. Other embodiments are described and claimed.
Abstract:
A processor may include an address monitor table and an atomic update table to support speculative threading. The processor may also include one or more registers to maintain state associated with execution of speculative threads. The processor may support one or more of the following primitives: an instruction to write to a register of the state, an instruction to trigger the committing of buffered memory updates, an instruction to read the a status register of the state, and/or an instruction to clear one of the state bits associated with trap/exception/interrupt handling. Other embodiments are also described and claimed.
Abstract:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
Abstract:
A processor may include an address monitor table and an atomic update table to support speculative threading. The processor may also include one or more registers to maintain state associated with execution of speculative threads. The processor may support one or more of the following primitives: an instruction to write to a register of the state, an instruction to trigger the committing of buffered memory updates, an instruction to read the a status register of the state, and/or an instruction to clear one of the state bits associated with trap/exception/interrupt handling. Other embodiments are also described and claimed.
Abstract:
A low cost, low power consumption scalable architecture is provided to allow a computer system to be managed remotely during all system power states. In a lowest power state, power is only applied to minimum logic necessary to examine a network packet. Power is applied for a short period of time to an execution subsystem and one of a plurality of cores selected to handle processing of received service requests. After processing the received service requests, the computer system returns to the lowest power state.
Abstract:
A technique for thread synchronization and communication. More particularly, embodiments of the invention pertain to managing communication and synchronization among two or more threads of instructions being executing by one or more microprocessors or microprocessor cores.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.