Abstract:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
Abstract:
A processing system includes an interconnect and a processing core, coupled to the interconnect, to execute a plurality of virtual machines each being identified by a respective identifier, and tag, by an identifier of the first virtual machine, a first transaction initiated by a first virtual machine to access the interconnect.
Abstract:
According to an embodiment of the invention, a method and apparatus for inter-processor interrupts in a multi-processor system are described. An embodiment comprises writing an inter-processor interrupt request to a first memory location; monitoring the first memory location; detecting the inter-processor interrupt request in the first memory location; calling a function for the inter-processor interrupt request; and performing the function for the inter-processor interrupt request.
Abstract:
An apparatus and method is described herein for providing speculation control instructions. An xAcquire and xRelease instruction are provided to define a critical section. In one embodiment, the xAcquire instruction includes a lock instruction with an elision prefix and the xRelease instruction includes a lock release instruction with an elision prefix. As a result, a processor is able to elide locks and transactionally execute a critical section defined in software by xAcquire and xRelease. But by adding only prefix hints, legacy processor are able to execute the same code by just ignoring the hints and executing the critical section traditionally with locks to guarantee mutual exclusion. Moreover, xBegin and xEnd are similarly provided for in an Instruction Set Architecture (ISA) to define a transactional code region. In addition, other control speculation instructions, such as xAbort to enable explicit abort of a critical or transactional code section and xTest to test a state of speculative execution is also provided in the ISA.
Abstract:
A method, apparatus, and system are provided for performing compare and exchange operations using a sleep-wakeup mechanism. According to one embodiment, an instruction at a processor is executed to help acquire a lock on behalf of the processor. If the lock is unavailable to be acquired by the processor, the instruction is put to sleep until an event has occurred.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.
Abstract:
A low cost, low power consumption scalable architecture is provided to allow a computer system to be managed remotely during all system power states. In a lowest power state, power is only applied to minimum logic necessary to examine a network packet. Power is applied for a short period of time to an execution subsystem and one of a plurality of cores selected to handle processing of received service requests. After processing the received service requests, the computer system returns to the lowest power state.
Abstract:
A processor may include an address monitor table and an atomic update table to support speculative threading. The processor may also include one or more registers to maintain state associated with execution of speculative threads. The processor may support one or more of the following primitives: an instruction to write to a register of the state, an instruction to trigger the committing of buffered memory updates, an instruction to read the a status register of the state, and/or an instruction to clear one of the state bits associated with trap/exception/interrupt handling. Other embodiments are also described and claimed.
Abstract:
The latencies associated with retrieving instruction information for a main thread are decreased through the use of a simultaneous helper thread. The helper thread is a speculative prefetch thread to perform instruction prefetch and/or trace pre-build for the main thread.
Abstract:
Apparatus, system and methods are provided for performing speculative data prefetching in a chip multiprocessor (CMP). Data is prefetched by a helper thread that runs on one core of the CMP while a main program runs concurrently on another core of the CMP. Data prefetched by the helper thread is provided to the helper core. For one embodiment, the data prefetched by the helper thread is pushed to the main core. It may or may not be provided to the helper core as well. A push of prefetched data to the main core may occur during a broadcast of the data to all cores of an affinity group. For at least one other embodiment, the data prefetched by a helper thread is provided, upon request from the main core, to the main core from the helper core's local cache.