Abstract:
Embodiments relate to depositing a layer of material on a permeable substrate by passing the permeable substrate between a set of reactors. The reactors may inject source precursor, reactant precursor, purge gas or a combination thereof onto the permeable substrate as the permeable substrate passes between the reactors. Part of the gas injected by a reactor penetrates the permeable substrate and is discharged by the other reactor. The remaining gas injected by the reactor moves in parallel to the surface of the permeable substrate and is discharged via an exhaust portion formed on the same reactor.
Abstract:
Performing atomic layer deposition (ALD) using radicals of a mixture of nitrogen compounds to increase the deposition rate of a layer deposited on a substrate. A mixture of nitrogen compound gases is injected into a radical reactor. Plasma of the compound gas is generated by applying voltage across two electrodes in the radical reactor to generate radicals of the nitrogen compound gases. The radicals are injected onto the surface of a substrate previously injected with source precursor. The radicals function as a reactant precursor and deposit a layer of material on the substrate.
Abstract:
An elongated reactor assembly in a deposition device for performing atomic layer deposition (ALD) on a large substrate. The elongated reactor assembly includes one or more injectors and/or radical reactors. Each injector or radical reactor injects a gas or radicals onto the substrate as the substrate passes the injector or radical reactor as part of the ALD process. Each injector or radical reactor includes a plurality of sections where at least two sections have different cross sectional configurations. By providing different sections in the injector or radical reactor, the injector or radical reactor may inject the gas or the radicals more uniformly over the substrate. Each injector or radical reactor may include more than one outlet for discharging excess gas or radicals outside the deposition device.
Abstract:
Atomic layer deposition is performed by reciprocating a susceptor in two directions, subjecting a substrate on the susceptor to two different sequences of processes. By subjecting the susceptor to different sequences of processes, the substrate undergoes different processes that otherwise would have required an additional set of injectors or reactors. The reduced number of injectors or reactors enables a more compact deposition device, and reduces the cost associated with the deposition device.
Abstract:
A rotating reactor assembly includes an injector rotor comprising a channel extending in a direction parallel to a rotational axis of the injector rotor and at least one injection hole connected to the channel; and an intake port through which a material is introduced. As the injector rotor rotates, the channel is timely and/or periodically connected to the intake port such that the material is injected to a substrate through the at least one injection hole.
Abstract:
A method for forming a thin film using radicals generated by plasma may include generating radicals of a reactant precursor using plasma; forming a first thin film on a substrate by exposing the substrate to a mixture of the radicals of the reactant precursor and a source precursor; exposing the substrate to the source precursor; and forming a second thin film on the substrate by exposing the substrate to the mixture of the radicals of the reactant precursor and the source precursor. Since the substrate is exposed to the source precursor between the formation of the first thin film and the formation of the second thin film, the rate of deposition may be improved.
Abstract:
A plasma reactor includes a plasma generator configured to spray plasma, and an injector located adjacent to the plasma generator and configured to inject a precursor to the plasma sprayed from the plasma injector. The injector includes a platform having an opening, at least one injection hole formed in the platform to inject the precursor to the opening, and a channel formed in the platform to connect with the at least one injection hole to carry the precursor. The plasma reactor may allow supply of the plasma together with the precursor. In case corona plasma is used where a vacuum state is not needed, a wider process window may be ensured.
Abstract:
An optical disc player capable of keeping a rear surface of a door out of a user's sight when the door is opened to present an aesthetically pleasing appearance and promote a beauty thereof. The optical disc player includes a main body with a front panel having an entrance, a tray disposed at the main body to be extracted from or retracted into the main body through the entrance, a door to open or close the entrance, and a door connecting unit to connect the door to the front panel such that the door is opened or closed. The door connecting unit includes a first connecting link having one end rotatably connected to a first position of an inner surface of the door and the other end rotatably connected to a second position of the front panel, and a second connecting link having one end rotatably connected to a third position higher than the first position of the inner surface of the door and the other end rotatably connected to a fourth position higher than the second position of the front panel.
Abstract:
A method of depositing a hafnium-based dielectric film is provided. The method comprises atomic layer deposition using ozone and one or more reactants comprising a hafnium precursor. A semiconductor device is also provided. The device comprises a substrate, a hafnium-based dielectric layer formed atop the substrate, and an interfacial layer formed between the substrate and the hafnium-based dielectric layer, wherein the interfacial layer comprises silicon dioxide and has a crystalline structure.
Abstract:
A multi-layer film for a thin film structure, a capacitor using the multi-layer film and methods for fabricating the multi-layer film and the capacitor, the multi-layer film including a composition transition layer between a lower material layer and an upper material layer respectively formed of different elements whose interaction parameters are different from each other, the composition transition layer containing both elements of the lower and upper material layers, the concentration of the composition transition layer gradually varying from the portion of the composition transition layer contacting with the lower material layer to the portion of the composition transition layer contacting with the upper material layer such that the concentration of the element of the upper material layer is relatively large in its portion adjacent to the upper material layer, each of the lower and upper material layers being formed of an oxide or nitride material of aluminum, silicon, zirconium, cerium, titanium, yttrium, tantalum or niobium.