Abstract:
A method for post-OPC verification including of several steps is provided. First, a pre-OPC layout of an integrated circuit (IC) is received. Then, a first OPC procedure is performed to obtain a post-OPC layout of the IC. After that, a first extraction process is performed on the pre-OPC layout and a second extraction process is performed on the post-OPC layout to respectively obtain a first netlist and a second netlist by using a processor. Next, a verification process is performed by using the processor to determine whether an electrical network of the first netlist and an electrical network of the second netlist are identical. The verification process is then terminated if the electrical network of the first netlist and the electrical network of the second netlist are identical. An apparatus for post-OPC verification is also provided.
Abstract:
A method for IC design is provided. Firstly, an IC design layout having a main feature with an original margin is received. Then, a first modified margin of the main feature is generated; and a first photolithography simulation procedure of the main feature with the first modified margin is performed to generate a first contour having a plurality of curves. Next, an equation of each of the curves is obtained; each equation of the curves is manipulated to obtain a vertex of each of the curves. After that, a first group of target points are assigned to the original margin. Each of the first group of target points respectively corresponds to one of the vertices. Finally, an optical proximity correction (OPC) procedure is performed by using the first group of target points to generate a second modified margin. An apparatus for IC design is also provided.
Abstract:
A semiconductor process is described in this application. The process includes the following steps: providing a semiconductor substrate; measuring a warpage level of the semiconductor substrate; and holding the semiconductor substrate by providing at least one vacuum suction according to the warpage level, so that the semiconductor substrate is subjected to a plurality of varied suction intensities. The semiconductor substrate is held on a chuck having a plurality of holes grouped into a plurality of groups, and the sizes of the holes within different groups are different, wherein the sizes of the holes increase from a center toward an edge of the chuck, and the holes are arranged in a spiral.
Abstract:
A memory cell array includes a bit line, a complementary bit line, a first operation voltage supply circuit, a second operation voltage supply circuit, a first memory cell and a second memory cell. The first operation voltage supply circuit is electrically coupled to the bit line and the complementary bit line and used for supplying a first operation voltage. The second operation voltage supply circuit is electrically coupled to the bit line and the complementary bit line and used for supplying a second operation voltage. The first memory cell is electrically coupled to the bit line and the complementary bit line and used for receiving the first operation voltage. The second memory cell is electrically coupled to the bit line and the complementary bit line and used for receiving the second operation voltage. The first and second memory cells are located in a same column in the memory cell array.
Abstract:
A semiconductor process is described in this application. The process includes the following steps: providing a semiconductor substrate; measuring a warpage level of the semiconductor substrate; and holding the semiconductor substrate by providing at least one vacuum suction according to the warpage level, so that the semiconductor substrate is subjected to a plurality of varied suction intensities. The semiconductor substrate is held on a chuck having a plurality of holes grouped into a plurality of groups, and the sizes of the holes within different groups are different, wherein the sizes of the holes increase from a center toward an edge of the chuck, and the holes are arranged in a spiral.
Abstract:
A method for fabricating an image sensor, wherein the method comprises steps as follows: Firstly, a transparent substrate is formed on a working substrate. Pluralities of micro lens are formed in the transparent substrate, wherein the lenses have a refraction ratio differing from that of the transparent substrate. Subsequently, a color filter is formed on the lenses. Afterward, the color filter is engaged with an image sensing device by flipping around the working substrate.
Abstract:
In a process of forming a seed layer, particularly in a vertical trench or via, a semiconductor substrate having a dielectric structure and a hard mask structure thereon is provided. An opening is formed in the hard mask structure, and a trench or via is formed in the dielectric structure in communication with the opening, wherein an area of the opening is greater than that of an entrance of the trench or via. A seed layer is then deposited in the trench or via through the opening, and then subjected to a reflow process.
Abstract:
A method for manufacturing a non-volatile memory is disclosed. A gate structure is formed on a substrate and includes a gate dielectric layer and a gate conductive layer. The gate dielectric layer is partly removed, thereby a symmetrical opening is formed among the gate conductive layer, the substrate and the gate dielectric layer, and a cavity is formed on end sides of the gate dielectric layer. A first oxide layer is formed on a sidewall and bottom of the gate conductive layer, and a second oxide layer is formed on a surface of the substrate. A nitride material layer is formed covering the gate structure, the first and second oxide layer and the substrate and filling the opening. An etching process is performed to partly remove the nitride material layer, thereby forming a nitride layer on a sidewall of the gate conductive layer and extending into the opening.
Abstract:
A layout method of a semiconductor circuit is provided. The layout method is firstly putting a plurality of circuit patterns on a substrate, wherein a first distance is the largest distance between any one of the circuit patterns and one of other circuit patterns adjacent thereto. The layout method is then determining whether the first distance is larger than a first critical value. Later, when the first distance is larger than the first critical value, at least a closed loop dummy pattern is putted in one of the areas corresponding to the first distance between the pair of the circuit patterns. The closed loop dummy pattern is putted in a same layer with the circuit patterns, surrounds between the pair of circuit patterns and is insulated from the circuit patterns.
Abstract:
A supply voltage generation circuit includes a comparison unit, a voltage level control unit and a voltage regulator circuit. Comparison unit is configured to compare input data and output data of a memory array to each other and thereby generating a comparison result, wherein output data are storage data stored in a plurality of memory units of the memory array processed by a program operation according to the input data, and comparison result indicates the number of different bits existing between the output data and the input data. Voltage level control unit is configured to generate a control signal according to the comparison result. Voltage regulator circuit is configured to provide a supply voltage for the memory array and adjust value of the supply voltage according to the control signal. A memory and an operation method of a supply generation circuit used for a memory array are also provided.