摘要:
First-in/first-out (“FIFO”) memory circuitry includes first and second Gray-code-based counters for respectively counting write and read clock signals. A Gray code subtractor subtracts from one another the counts output by the counters. Shift register circuitry shifts in successive data words in synchronism with the write clock signal. The shift register circuitry includes selection circuitry configured to select one of the data words based on a Gray code decoding of information from the subtractor. Circuitry may also be included to monitor the information from the subtractor to detect full or empty conditions of the shift register circuitry.
摘要:
A phase change layer may switch between more and less conductive states in response to electrical stimulation. The phase change layer may be positioned over a non-switching ovonic material which acts as an electrode, a resistive heater, and an insulating barrier. The phase change layer may be positioned over a non-switching ovonic material which acts as an electrode, a resistive heater, and a thermal barrier.
摘要:
The present invention is directed to a system, a module, and an apparatus and method for forming a microelectronic memory device. In one embodiment, a system includes a processor and a controller coupled to the processor with at least one memory module coupled to the controller, the module including a pair of memory devices oppositely positioned on respective surfaces of a substrate and interconnected by members extending through the substrate that couple terminals of the devices, the terminals being selected to include a group of terminals that are configured to communicate functionally compatible signals.
摘要:
A synchronization circuit includes a first and second phase-shifting path circuit, with each generates a phase-shifted signal responsive to an input signal and the phase-shifted signal having respective fine and coarse phase shifts relative to the input signal. Each phase-shifting path circuit adjusts the coarse and fine phase shifts responsive to control signals. A selection circuit outputs one of the phase-shifted signals responsive to a selection signal. A control circuit monitors a phase shift between the input signal and the output phase-shifted signal and develops the selection and control signals to select one of the phase-shifting path circuits and to adjust the fine phase shift of the selected path circuit and the fine and coarse phase shifts of the other path circuit. When the fine delay of the selected phase-shifting path circuit has a threshold value, the control circuit develops the selection signal to select the other phase-shifting circuit.
摘要:
A method and apparatus for calibrating a data path of a digital circuit uses an even bit pseudo-random calibration pattern. A portion of the pattern is captured in a capture period and used to predict a next arriving portion of the calibration pattern. The next arriving portion of the calibration pattern is captured and then compared to the predicted pattern in a compare period, and the result of the comparison is used to relatively time data arriving in the data path to a clocking signal which clocks in the data. The time duration of the compare period may be varied to ensure that all possible bits of the calibration pattern are used in the calibration procedure.
摘要:
The present invention coordinates the execution of commands, received in response to a continuous system clock, with the receipt of data in response to a burst clock. Command capture logic receives command information in response to the system clock. A storage element is responsive to the command capture logic for storing certain command information such as write commands. A two stage pipeline receives the command information from the storage element in response to the burst clock and outputs the command information in response to the system clock. Methods of operating the apparatus are also disclosed.
摘要:
A method and apparatus for accurately determining the actual arrival of data at a memory device relative to the write clock to accurately align the start of data capture and the arrival of the data at the memory device is disclosed. The actual time of arrival of data at the inputs to a memory device is determined by sending back-to-back write commands along with a predetermined data pattern to the memory device. The data pattern is stored in a register and any difference between the predicted arrival time of the data and the actual arrival time of the data is determined by logic circuitry. Any determined difference can then be compensated for by delaying the start of the capture of the data at the memory device, thereby accurately aligning the start of the data capture and the arrival of the data at the memory device.
摘要:
A memory device is operable in either a high mode or a low speed mode. In either mode, 32 bits of data from each of two memory arrays are prefetched into respective sets of 32 flip-flops. In the high-speed mode, the prefetched data bits are transferred in parallel to 4 parallel-to-serial converters, which transform the parallel data bits to a burst of 8 serial data bits and apply the burst to a respective one of 4 data bus terminals. In the low speed mode, two sets of prefetched data bits are transferred in parallel to 8 parallel-to-serial converters, which transform the parallel data bits to a burst of 8 serial data bits and apply the burst to a respective one of 8 data bus terminals.
摘要:
In a high speed memory subsystem differences in each memory device's minimum device read latency and differences in signal propagation time between the memory device and the memory controller can result in widely varying system read latencies. The present invention equalizes the system read latencies of every memory device in a high speed memory system by comparing the differences in system read latencies of each device and then operating each memory device with a device system read latency which causes every device to exhibit the same system read latency.
摘要:
A circuit having a data input pin for receiving a data signal, a clock input for receiving a clock signal and having a low setup time and a zero hold time is comprised of an input stage for periodically connecting a sampling device to the data input pin in response to the clock signal. An evaluation stage, responsive to the clock signal, evaluates the charge collected by the device at a time the device is disconnected from the data input pin. The evaluation stage produces a signal representative of the sampled charge. An output stage, responsive to the clock signal and the produced signal, outputs a data signal representative of the sampled data signal. The circuit may have a single data path and a single charge accumulating device such that an output signal representative of the sampled data signal is available on either the rising or the falling edge of the clock signal. Alternatively, multiple data paths may be provided as well as multiple charge accumulating devices so that data signals representative of the sampled data may be output on both the rising and the falling edge of the clock signal. The circuit can be operated as either a latch or a register. A method of operating a data acquisition and retention circuit having a zero hold time and of the type useful for receiving signals from a high speed bus is also disclosed.