摘要:
The present invention is a semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body.
摘要:
A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
摘要:
A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
摘要:
In a metal gate replacement process, a cup-shaped gate metal oxide dielectric may have vertical portions that may be exposed to a reduction reaction. As a result of the reduction reaction, the vertical portions may be converted to metal, which adds to the existing gate electrode. In some cases, removing the vertical dielectric portions reduces fringe capacitance and may also advantageously slightly increased underdiffusion without adding heat, in some embodiments.
摘要:
A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the-removal of a nitride etch stop layer.
摘要:
A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed on a substrate that applies strain to the high-k gate dielectric layer, and a metal gate electrode that is formed on the high-k gate dielectric layer.
摘要:
A quantum well transistor or high electron mobility transistor may be formed using a replacement metal gate process. A dummy gate electrode may be used to define sidewall spacers and source drain contact metallizations. The dummy gate electrode may be removed and the remaining structure used as a mask to etch a doped layer to form sources and drains self-aligned to said opening. A high dielectric constant material may coat the sides of said opening and then a metal gate electrode may be deposited. As a result, the sources and drains are self-aligned to the metal gate electrode. In addition, the metal gate electrode is isolated from an underlying barrier layer by the high dielectric constant material.
摘要:
A method for making a titanium carbide layer is described. That method comprises alternately introducing a carbon containing precursor and a titanium containing precursor into a chemical vapor deposition reactor, while a substrate is maintained at a selected temperature. The reactor is operated for a sufficient time, and pulse times are selected for the carbon containing precursor and the titanium containing precursor, to form a titanium carbide layer of a desired thickness and workfunction on the substrate.
摘要:
A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
摘要:
A sacrificial gate structure, including nitride and fill layers, may be replaced with a metal gate electrode. The metal gate electrode may again be covered with a nitride layer covered by a fill layer. The replacement of the nitride and fill layers may reintroduce strain and provide an etch stop.