Abstract:
A method of forming a semiconductor structure includes forming a gate structure having a first conductive material above a semiconductor substrate, gate spacers on opposing sides of the first conductive material, and a first interlevel dielectric (ILD) layer surrounding the gate spacers and the first conductive material. An upper portion of the first conductive material is recessed. The gate spacers are recessed until a height of the gate spacers is less than a height of the gate structure. An isolation liner is deposited above the gate spacers and the first conductive material. A portion of the isolation liner is removed so that a top surface of the first conductive material is exposed. A second conductive material is deposited in a contact hole created above the first conductive material and the gate spacers to form a gate contact.
Abstract:
Embodiments of the invention provide approaches for forming gate and source/drain (S/D) contacts. Specifically, the semiconductor device includes a gate transistor formed over a substrate, a S/D contact formed over a trench-silicide (TS) layer and positioned adjacent the gate transistor, and a gate contact formed over the gate transistor, wherein at least a portion of the gate contact is aligned over the TS layer. This structure enables contact with the TS layer, thereby decreasing the distance between the gate contact and the source/drain, which is desirable for ultra-area-scaling.
Abstract:
One method includes forming a recessed gate/spacer structure that partially defines a spacer/gate cap recess, forming a gate cap layer in the spacer/gate cap recess, forming a gate cap protection layer on an upper surface of the gate cap layer, and removing portions of the gate cap protection layer, leaving a portion of the gate cap protection layer positioned on the upper surface of the gate cap layer. A device disclosed herein includes a gate/spacer structure positioned in a layer of insulating material, a gate cap layer positioned on the gate/spacer structure, wherein sidewalls of the gate cap layer contact the layer of insulating material, and a gate cap protection layer positioned on an upper surface of the gate cap layer, wherein the sidewalls of the gate cap protection layer also contact the layer of insulating material.
Abstract:
A method for forming self-aligned contacts includes patterning a mask between fin regions of a semiconductor device, etching a cut region through a first dielectric layer between the fin regions down to a substrate and filling the cut region with a first material, which is selectively etchable relative to the first dielectric layer. The first dielectric layer is isotropically etched to reveal source and drain regions in the fin regions to form trenches in the first material where the source and drain regions are accessible. The isotropic etching is super selective to remove the first dielectric layer relative to the first material and relative to gate structures disposed between the source and drain regions. Metal is deposited in the trenches to form silicide contacts to the source and drain regions.
Abstract:
After forming a material stack including a gate dielectric, a work function metal and a cobalt gate electrode in a gate cavity formed by removing a sacrificial gate structure, the cobalt gate electrode is recessed by oxidizing the cobalt gate electrode to provide a cobalt oxide layer on a surface of the cobalt gate electrodes and removing the cobalt oxide layer from the surface of the cobalt gate electrodes by a chemical wet etch. The oxidation and oxide removal steps can be repeated until the cobalt gate electrode is recessed to any desired thickness. The work function metal can be recessed after the recessing of the cobalt gate electrode is completed or during the recessing of the cobalt gate electrode.
Abstract:
After forming a material stack including a gate dielectric, a work function metal and a cobalt gate electrode in a gate cavity formed by removing a sacrificial gate structure, the cobalt gate electrode is recessed by oxidizing the cobalt gate electrode to provide a cobalt oxide layer on a surface of the cobalt gate electrodes and removing the cobalt oxide layer from the surface of the cobalt gate electrodes by a chemical wet etch. The oxidation and oxide removal steps can be repeated until the cobalt gate electrode is recessed to any desired thickness. The work function metal can be recessed after the recessing of the cobalt gate electrode is completed or during the recessing of the cobalt gate electrode.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
Abstract:
The disclosure relates to methods of forming etch-resistant spacers in an integrated circuit (IC) structure. Methods according to the disclosure can include: forming a mask on an upper surface of a gate structure positioned over a substrate; forming a spacer material on the substrate, the mask, and exposed sidewalls of the gate structure; forming a separation layer over the substrate and laterally abutting the spacer material to a predetermined height, such that an exposed portion of the spacer material is positioned above an upper surface of the separation layer and at least partially in contact with the mask; and implanting a dopant into the exposed portion of the spacer material to yield a dopant-implanted region within the spacer material, wherein the dopant-implanted region of the spacer material has a greater etch resistivity than a remainder of the spacer material.