摘要:
Certain embodiments herein relate to stream allocation indication for high efficiency wireless networks. A frame may include a HE-SIG-B field having a common part and an STA-specific part used to indicate multi-user multi-input multi-output (MU-MIMO) resource allocation. In some embodiments, a frame may include an HE-SIG-B field only having an STA-specific part used to indicate resource allocation.
摘要:
This disclosure describes methods, apparatus, and systems related to early bit indication system. A device may identify a high efficiency frame in accordance with a high efficiency communication standard, received from a first device, the high efficiency frame including at least in part a legacy signal field and a high efficiency signal field. The device may determine a length field included in the legacy signal field. The device may determine one or more bits included in the length field. The device may determine a repeated high efficiency signal field based at least in part on the one or more bits.
摘要:
Certain embodiments herein relate to stream allocation indication for high efficiency wireless networks. A frame may include a HE-SIG-B field having a common part and an STA-specific part used to indicate multi-user multi-input multi-output (MU-MIMO) resource allocation. In some embodiments, a frame may include an HE-SIG-B field only having an STA-specific part used to indicate resource allocation.
摘要:
Techniques for resource block allocation in a multi-user MIMO High Efficiency WLAN system are provided. Specifically, teachings that when taken alone or together, provide a device or a group of devices with an improved resource allocation for the reduction of usable tone waste, are presented. The present disclosure includes a system that provides a user with a technique allocating data tones prior to the encapsulation unit or overhead tones on a resource block unit. Further, the total allocated bandwidth can be reduced prior resource allocation to overcome modulation and coding scheme downgrading caused by severe puncturing. Alternatively, only band edge basic resource blocks are reduced to account for overhead tones which largely reside on band edges.
摘要:
Embodiments of User Equipment (UE), an Evolved Node-B (eNB), and methods for channel quality indicator (CQI) feedback are disclosed herein. An aperiodic CQI type parameter received at the UE may indicate a CQI type for use in a determination of an aperiodic CQI based on signals received from the eNB. Channel-state information reference signals (CSI-RS) may be used when single-user multiple-input multiple-output (SU-MIMO) signals are received. Physical downlink shared channel (PDSCH) blocks may be used when multi-user multiple-input multiple-output (MU-MIMO) signals are received. The aperiodic CQI may be transmitted to the eNB as part of an aperiodic CQI measurement report. In addition, periodic CQI measurement reports may also be transmitted to the eNB and may include periodic CQIs that are based on CSI-RS received at the UE.
摘要:
Example systems, methods, and devices for extending range of WiFi networks are discussed. More specifically, methods for extending range of a Wi-Fi network are disclosed. The method may include the operations of appending, by a network device, one or more codebits to one or more original codebits or coded symbols, sending, by the network device, the original codebits or coded symbols and the appended codebits to an interleaver or a constellation mapper for transmission. The original codebits or coded symbols and the appended codebits may be sent over a plurality of subcarriers. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
Techniques for facilitating device-to-device (D2D) communications using a high efficiency distributed channel access scheme are generally described herein. In some examples, a communication zone allocated for wireless D2D communications is divided into resource contention and scheduled transmission portions. The resource contention segment may be used to transmit a request message from a transmitting device to a receiving device (a request-to-send message), and transmit a response to the request message from the receiving device to the transmitting device (a clear-to-send message). The response can indicate a time for the data transmission to occur during the scheduled transmission segment. During the scheduled transmission segment, the scheduled data transmission and other D2D data transmissions among the various devices will be performed. In further examples, contention access techniques may be used during the resource contention segment to manage access to the resource channel.
摘要:
Technology for transmitting a distributed control channel element (CCE) for an enhanced physical downlink control channel (ePDCCH) and a localized CCE in a physical resource block (PRB) pair from a node and technology for physical downlink shared channel (PDSCH) physical resource block (PRB) allocation with at least one enhanced physical downlink control channel (ePDCCH) at a wireless device is disclosed. One method can include a node precoding at least one distributed CCE and at least one localized CCE for the PRB pair. The node can transmit the at least one distributed CCE for transmit diversity using at least two user equipment-specific reference signal (UERS) ports and transmitting the at least one localized CCE in the PRB pair. The at least two UERS ports can be used to transmit two CCEs.
摘要:
Embodiments pertain to systems, methods, and component devices for dynamic non-orthogonal multiple access (NOMA) communications. A first example embodiment includes user equipment (UE) configured to receive a first downlink control indicator (DCI) from an evolved node B (eNB) and process the first subframe as a first higher power NOMA subframe in response to a first power ratio signal. The DCI includes the first power ratio signal for a first NOMA subframe. The UE may then receive, from the eNB, a second DCI, the second DCI comprising a second power ratio signal for a second subframe and process, by the UE, the second subframe as a second lower power NOMA subframe in response to the second power ratio signal. Additional embodiments may further use another DCI with a third power ratio signal to configure the UE to receive orthogonal multiple access (OMA) communications.
摘要:
Embodiments of an evolved Node B (eNB) and methods for determining priority values for User Equipment (UE) are generally described herein. A method performed by circuitry of an eNB may include receiving, at the eNB, a usage report from the UE. The usage report may include information indicating a channel usage time and a transmission power of the UE. The method may include determining, using the usage report, a priority value for the UE. The method may include sending the priority value to the UE, wherein the UE is to utilize the priority value to perform distributed scheduling of device-to-device (D2D) communication over a D2D connection with a second UE.