Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wakeup packet. For example, an apparatus may include circuitry configured to cause a wireless device to generate a frame comprising a Low-Power Wakeup-Receiver (LP-WUR) capability indication to indicate a capability of the wireless device to process communication of a wakeup packet; and to transmit the frame.
Abstract:
Mobile platform power management is an important problem especially for battery-powered small form factor platforms such as smartphones, tablets, wearable devices, Internet of Things (IOT) devices, and the like. One exemplary technique disclosed herein defines a method for a fine-grained wake-up mode for Wi-Fi/BT/BLE that utilizes a low-power wake-up radio. For example, the actual data contained in the wake-up packet can be forwarded directly to a memory block of the device without waking-up the Wi-Fi/BT/BLE radio. As another example, if an IEEE 802.11 MAC frame is contained in the wake-up packet, then just the MAC processor of the Wi-Fi/BT/BLE radio can be woken up to process the IEEE 802.11 MAC frame contained in the wake-up packet, and have the PHY module of the Wi-Fi/BT/BLE radio kept powered off or in a low power mode to, for example, save energy.
Abstract:
Apparatuses, methods and storage medium associated with power management, are disclosed herein. In embodiments, an apparatus for computing may include one or more processors, with each processor having one or more processor cores; one or more wireless communication components; memory coupled with the one or more processors to host a plurality of virtual machines operated by the one or more processors; and a virtual machine monitor to be loaded into the memory and operated by the one or more processors to manage resource allocation to the virtual machines. The virtual machine monitor may include a power manager to manage power consumption of the apparatus, based at least in part on states of the wireless communication components. Other embodiments may be described and/or claimed.
Abstract:
Techniques for presenting communication by two or more stations in a WLAN environment are provided. Specifically, methods are presented, that when taken alone or together, provide a device or group of devices with an efficient way for bandwidth adaptation using echo cancellation. Even more specifically, a narrow-bandwidth transmission can be interrupted in favor of a higher-bandwidth transmission upon one or more secondary channels becoming available or going quiet.
Abstract:
In accordance with some embodiments, a continuous thread is operated on the graphics processing unit. A continuous thread is launched one time from the central processing unit and then it runs continuously until an application on the central processing unit decides to terminate the thread. For example, the application may decide to terminate the thread in one of a variety of situations which may be programmed in advance. For example, upon error detection, a desire to change the way that the thread on the graphics processing unit operates, or in power off, the thread may terminate. But unless actively terminated by the central processing unit, the continuous thread generally runs uninterrupted.
Abstract:
Methods and systems may provide for determining whether a runtime disablement condition is met with respect to a sleep state and disabling the sleep state if the runtime disablement condition is met. Additionally, the sleep state may be enabled if a runtime reinstatement condition is met. In one example, determining whether the runtime disablement condition is met includes determining a false entry rate for the sleep state, and comparing the false entry rate to an energy-based threshold, wherein the sleep state is disabled if the false entry rate exceeds the energy-based threshold.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of a wakeup packet response. For example, an apparatus may include circuitry configured to cause a first wireless device to generate a wakeup packet including a wakeup response policy field to indicate a response policy; and to transmit the wakeup packet to a wakeup receiver of a second wireless device over a wakeup Resource Unit (RU) allocation of an Orthogonal Frequency Division Multiple Access (OFDMA) structure.
Abstract:
Technologies for monitoring network traffic include a computing device that monitors network traffic at a graphics processing unit (GPU) of the computing device. The computing device manages computing resources of the computing device based on results of the monitored network traffic. The computing resources may include one or more virtual machines to process network traffic that is to be monitored at the GPU the computing device. Other embodiments are described and claimed.
Abstract:
Methods and systems may provide for determining a status of a mobile platform, wherein the status indicates whether the mobile platform is stationary, and adapting a detection schedule of one or more location sensors on the mobile platform based at least in part on whether the mobile platform is stationary. Additionally, one or more location updates may be generated based at least in part on information from the one or more location sensors. In one example, a location request is received, wherein the detection schedule is adapted further based on quality of service (QoS) information associated with the location request, and wherein the one or more location updates are generated in response to the location request.