Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
In one embodiment, an apparatus can include a trench extending into a semiconductor region of a first conductivity type, an electrode disposed in the trench, and a source region of the first conductivity type abutting a sidewall of the trench. The apparatus can include a first well region of a second conductivity type disposed in the semiconductor region below the source region and abutting the sidewall of the trench lateral to the electrode where the second conductivity type is opposite the first conductivity type. The apparatus can also include a second well region of the second conductivity type disposed in the semiconductor region and abutting the sidewall of the trench, and a third well region of the first conductivity type disposed between the first well region and the second well region.
Abstract:
A method for forming a semiconductor structure includes the following steps. Trenches are formed in a semiconductor region using a masking layer such that the trenches have a first depth, a first width along their bottom, and sidewalls having a first slope. The masking layer is removed, and a bevel etch is performed to taper the sidewalls of the trenches so that the sidewalls have a second slope less than the first slope.
Abstract:
A system, a method and computer-readable media for managing content received over a network by a client device. A network transmission communicating an item of content is detected by a client device, and a determination is made whether the client device is in a mode of operation that allows the storing of uninvited media content. For example, the client device may be a mobile communication device monitoring the media being transmitted over a broadcast channel. When an item of content is observed traversing the broadcast channel, a set of user-defined preferences is accessed to determine whether to permit receiving the item. If permitted, the item of content is stored in a data store on the client device for subsequent presentation to the user.
Abstract:
A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type. Each of the plurality of pillars of second conductivity type further includes a plurality of implant regions of the second conductivity type arranged on top of one another along the depth of pillars of second conductivity type, and a trench portion filled with semiconductor material of the second conductivity type directly above the plurality of implant regions of second conductivity type.
Abstract:
The present invention is directed to novel polypeptides having sequence identity with IL-17, IL-17 receptors and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention. Further provided herein are methods for treating degenerative cartilaginous disorders and other inflammatory diseases.
Abstract:
The present invention is directed to novel polypeptides having homology to certain human uncoupling proteins (“UCPs”) and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention, and methods for producing the polypeptides of the present invention.
Abstract:
The CMOS field effect transistors, used in microprocessors and other digital VLSI circuits, face major challenges such as thin gate dielectrics leakage and scaling limits, severe short channel effects, limited performance improvement with scaling, complicated fabrication process with added special techniques, and surface mobility degradation. This disclosure proposes a new CMOS-compatible optoelectronic transistor. The current is much higher than the MOS transistors, due to the high carrier mobility with bulk transportation. The optoelectronic transistors are scalable to the sub-nanometer ranges without short channel effects. It is also suitable for low power applications and ULSI circuits. The new transistor consists of a laser or LED diode as drain or source, and a photo sensor diode (avalanche photo diode) as source or drain. The transistor is turned on by applying a gate voltage, similar to the CMOS transistors, and a laser or LED light signal is sent to the nearby photo diode, causing an avalanche breakdown and high drain current. The transistor is surrounded by dielectrics and metal isolations, which serve as a metal box or cavity, so the generated laser or LED lights are confined and reflected back from the metal. The drain current increases exponentially with the drain or gate voltage. This exponential drain current vs. drain or gate voltage characteristics makes the optoelectronic transistor run much faster than the transitional linear MOSFET.The optic transistor current-voltage characteristics are totally different from transitional CMOS transistors.
Abstract:
Thin effective gate oxide thickness with reduced leakage for replacement metal gate transistors is achieved by forming a protective layer between the gate oxide layer and metal gate electrode, thereby reducing stress. Embodiments include forming a protective layer of amorphous carbon containing metal carbides decreasing in concentration from the metal gate electrode toward the gate oxide layer across the protective layer. Embodiments of methodology include removing the removable gate, depositing a layer of amorphous carbon on the gate oxide layer, forming the metal gate electrode and then heating at an elevated temperature to diffuse metal from the metal gate electrode into the amorphous carbon layer, thereby forming the metal carbides. Embodiments also include metal gate transistors with a gate oxide layer having a high dielectric constant and silicon concentrated at the interfaces with the metal gate electrode and substrate.