Abstract:
A method includes determining, via status polling at a first interval, an indicator of an almost ready status of a set of memory cells of a memory device, based on the indicator of the almost ready status, determining the set of memory cells of the memory device is almost ready to complete execution of an operation on the set of memory cells of the memory device, and responsive to determining the set of memory cells of the memory device is almost ready to complete execution of the operation, performing status polling at a second interval.
Abstract:
Control logic in a memory device identifies a first group of wordlines associated with a first subset of memory cells of a set of memory cells to be programmed. A first dynamic start voltage operation including a first set of programming pulses and a first set of program verify operations is executed on a first portion of the first subset of memory cells to identify a first dynamic start voltage level, the executing of the first dynamic start voltage operation includes causing the first set of programming pulses to be applied to at least a portion of the first group of wordlines. A second set of programming pulses including at least one programming pulse having the first dynamic start voltage level are caused to be applied to the first group of wordlines to program a second portion of the first subset of memory cells of the set of memory cells. A second group of wordlines associated with a second subset of memory cells to be programmed is identified. A second dynamic start voltage operation including a third set of programming pulses and a second set of program verify operations are executed on a first portion of the second subset of memory cells to identify a second dynamic start voltage level.
Abstract:
Memory devices might include an array of memory cells and a controller configured to access the array of memory cells. The controller might be further configured to receive a command to perform an erase operation; and in response to the command to perform the erase operation, begin execution of the erase operation. The controller might be further configured to while executing the erase operation, receive a command to perform a program operation; in response to the command to perform the program operation, suspend the execution of the erase operation; and with the execution of the erase operation suspended, execute the program operation.
Abstract:
Memory devices might include an array of memory cells, a plurality of access lines, and control logic. The array of memory cells includes a plurality of strings of series-connected memory cells. Each access line of the plurality of access lines is connected to a control gate of a respective memory cell of each string of series-connected memory cells of the plurality of strings of series-connected memory cells. The control logic is configured to: open the array of memory cells for multiple read operations; read first page data from respective memory cells coupled to a selected access line of the plurality of access lines; read second page data from the respective memory cells coupled to the selected access line; and close the array of memory cells subsequent to reading the first page data and the second page data.
Abstract:
An apparatus is provided, comprising a substrate with a frontside and a backside opposite the frontside; control circuitry disposed over the frontside of the substrate; a memory array disposed over and electrically coupled to the control circuitry; a through-silicon via (TSV) disposed under the memory array, the TSV extending through the substrate from the control circuitry to the backside of the substrate; and a bond pad disposed on the backside of the substrate and electrically coupled to the control circuitry via the TSV.
Abstract:
A semiconductor device structure comprises stacked tiers each comprising at least one conductive structure and at least one insulating structure longitudinally adjacent the at least one conductive structure, at least one staircase structure having steps comprising lateral ends of the stacked tiers, and at least one opening extending through the stacked tiers and continuously across an entire length of the at least one staircase structure. The at least one conductive structure of each of the stacked tiers extends continuously from at least one of the steps of the at least one staircase structure and around the at least one opening to form at least one continuous conductive path extending completely across each of the stacked tiers. Additional semiconductor device structures, methods of forming semiconductor device structures, and electronic systems are also described.
Abstract:
Memory device are disclosed. A memory device may include multiple pairs of tiles. At least some of the pairs of tiles may include a block select circuit. At least one portion of the block select circuit within a first pair of tiles of the multiple pairs of tiles is offset from at least one other portion of the block select circuit within a second pair of tiles of the multiple pairs of tiles. Also, at least one pair of tiles of the multiple pair of tiles may include an associated vertical string driver offset from each of a first tile and a second tile of an associated pair of tiles.
Abstract:
Apparatuses and methods for reducing capacitance on a data bus are disclosed herein. In accordance with one or more described embodiments, an apparatus may comprise a plurality of memories coupled to an internal data bus and a command and address bus, each of the memories configured to receive a command on the command and address bus. One of the plurality of memories may be coupled to an external data bus. The one of the plurality of memories may be configured to provide program data to the internal data bus when the command comprises a program command and another of the plurality of memories is a target memory of the program command and may be configured to provide read data to the external data bus when the command comprises a read command and the another of the plurality of memories is a target memory of the read command.
Abstract:
Apparatuses and methods for reducing capacitance on a data bus are disclosed herein. In accordance with one or more described embodiments, an apparatus may comprise a plurality of memories coupled to an internal data bus and a command and address bus, each of the memories configured to receive a command on the command and address bus. One of the plurality of memories may be coupled to an external data bus, The one of the plurality of memories may be configured to provide program data to the internal data bus when the command comprises a program command and another of the plurality of memories is a target memory of the program command and may be configured to provide read data to the external data bus when the command comprises a read command and the another of the plurality of memories is a target memory of the read command.
Abstract:
A method includes receiving signaling indicative of performance of a sanitization operation to a processing device coupled to a memory device and applying a sanitization voltage to a plurality of memory blocks of the memory device. The sanitization voltage can be greater than an erase voltage of the plurality of memory blocks.