Abstract:
To suppress change in electric characteristics and improve reliability of a semiconductor device including a transistor formed using an oxide semiconductor. A semiconductor device includes a transistor including a gate electrode, a first insulating film, an oxide semiconductor film, a second insulating film, and a pair of electrodes. The gate electrode and the oxide semiconductor film overlap with each other. The oxide semiconductor film is located between the first insulating film and the second insulating film and in contact with the pair of electrodes. The first insulating film is located between the gate electrode and the oxide semiconductor film. An etching rate of a region of at least one of the first insulating film and the second insulating film is higher than 8 nm/min when etching is performed using a hydrofluoric acid.
Abstract:
Provided is a transistor which includes an oxide semiconductor film in a channel region. A change from a shift value before light irradiation to a shift value under light irradiation is greater than or equal to −1 V and less than or equal to 0.5 V, where the shift value is a gate voltage at a point of intersection of an axis of 1×10−12 A and a steepest tangent line of the logarithm of a drain current in drain current-gate voltage characteristics of the transistor, and where the light irradiation is performed on the oxide semiconductor film with light having an energy greater than or equal to a band gap of the oxide semiconductor film.
Abstract:
In a semiconductor device using a transistor including an oxide semiconductor, a change in electrical characteristics is inhibited and reliability is improved. The transistor includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a source electrode electrically connected to the oxide semiconductor film; a drain electrode electrically connected to the oxide semiconductor film; a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode; and a second gate electrode over the second insulating film. The second insulating film includes oxygen. The second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
Abstract:
Provided is a transistor with small parasitic capacitance or high frequency characteristics or a semiconductor device including the transistor. An oxide semiconductor film includes a first region in contact with a first conductive film, a second region in contact with a first insulating film, a third region in contact with a third insulating film, a fourth region in contact with a second insulating film, and a fifth region in contact with a second conductive film. The first insulating film is positioned over the first conductive film and the oxide semiconductor film. The second insulating film is positioned over the second conductive film and the oxide semiconductor film. The third insulating film is positioned over the first insulating film, the second insulating film, and the oxide semiconductor film. The third conductive film and the oxide semiconductor film partly overlap with each other with the third insulating film provided therebetween.
Abstract:
The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor have different structures. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide semiconductor film which contain the impurity element function as low-resistance regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. Furthermore, the first transistor provided in the driver circuit portion may include the oxide semiconductor film in which a first film and a second film are stacked, and the second transistor provided in the pixel portion may include the oxide semiconductor film which differs from the first film in the atomic ratio of metal elements.
Abstract:
A semiconductor device including an oxide semiconductor in which on-state current is high is provided. The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor have different structures. Furthermore, the first transistor and the second transistor are transistors having a top-gate structure. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide semiconductor film which contain the impurity element function as low-resistance regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. The first transistor provided in the driver circuit portion includes two gate electrodes between which the oxide semiconductor film is provided.
Abstract:
A transistor includes a multilayer film in which an oxide semiconductor film and an oxide film are stacked, a gate electrode, and a gate insulating film. The multilayer film overlaps with the gate electrode with the gate insulating film interposed therebetween. The multilayer film has a shape having a first angle between a bottom surface of the oxide semiconductor film and a side surface of the oxide semiconductor film and a second angle between a bottom surface of the oxide film and a side surface of the oxide film. The first angle is acute and smaller than the second angle. Further, a semiconductor device including such a transistor is manufactured.
Abstract:
A semiconductor device having a high degree of integration is provided. The semiconductor device includes a first and a second transistor, and an insulating layer. The first transistor includes a source electrode, a drain electrode over the insulating layer over the source electrode, a first semiconductor layer in contact with a top surface of the source electrode, an inner wall of an opening provided in the insulating layer, and a top surface of the drain electrode, a first gate insulating layer in contact with a top surface and a side surface of the first semiconductor layer, and a first gate electrode over the first gate insulating layer that includes a region overlapping with the inner wall of the opening. The second transistor includes a second semiconductor layer over the insulating layer, the source electrode in contact with one of a top surface and a side surface of the second semiconductor layer, the drain electrode in contact with the other of the top surface and the side surface of the second semiconductor layer, a second gate insulating layer in contact with the top surface of the second semiconductor layer, a top surface and a side surface of the source electrode, and a top surface and a side surface of the drain electrode, and a second gate electrode over the second gate insulating layer. The first semiconductor layer is in contact with the second gate electrode.
Abstract:
A novel semiconductor device is provided. The semiconductor device combines a lateral-channel transistor and a vertical-channel transistor. The lateral-channel transistor is employed as a p-channel transistor and the vertical-channel transistor is employed as an n-channel transistor to achieve a CMOS semiconductor device. An opening is provided in the insulating layer in a region overlapping with a gate electrode of the lateral-channel transistor, and the vertical-channel transistor is formed in the opening. An oxide semiconductor is used for a semiconductor layer of the vertical-channel transistor.
Abstract:
A transistor includes a multilayer film in which an oxide semiconductor film and an oxide film are stacked, a gate electrode, and a gate insulating film. The multilayer film overlaps with the gate electrode with the gate insulating film interposed therebetween. The multilayer film has a shape having a first angle between a bottom surface of the oxide semiconductor film and a side surface of the oxide semiconductor film and a second angle between a bottom surface of the oxide film and a side surface of the oxide film. The first angle is acute and smaller than the second angle. Further, a semiconductor device including such a transistor is manufactured.