Abstract:
The invention comprises a method and apparatus for treatment of a body part. More particularly, a method and apparatus for heat treatment of tissue using a catheter inserted into a body part is described along with means for positioning the catheter and means for positioning a set of electrodes relative to a tissue sample for treatment. Still more particularly, radio frequency energy at about 400 to 500 kilohertz is used to provide heat for the tissue treatment.
Abstract:
Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.
Abstract:
A sphincter treatment apparatus has an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means of the plurality has a distal section means and a proximal section means. Each of distal sections means of the arm means are coupled and each of the proximal sections means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
Abstract:
Systems for treating a mucosal surface of an alimentary canal tissue region are provided. The systems can include an elongate support structure, an expandable member positionable at a distal portion of the support structure and one or more radio frequency (RF) ablation electrodes carried by the expandable member. The elongate support structure and the expandable member can be adapted to place the one or more electrodes in contact with a mucosal surface of an alimentary canal tissue region. The system can further include an RF energy source connected to the one or more electrodes.
Abstract:
A method for treating a sphincter provides a polymer material having a liquid state. The method also provides a catheter having a distal end, a tissue piercing device carried by the distal end, and an energy delivery device coupled to the tissue piercing device. The tissue piercing device has a lumen. The method introduces the catheter into an esophagus and pierces an exterior sphincter tissue surface within with the tissue piercing device. The method advances the tissue piercing device into an interior sphincter tissue site and conveys the polymer material while in a liquid state through the lumen into the interior sphincter tissue site. The method delivers energy to the tissue piercing device to transform the polymer material into a less liquid state within the interior sphincter tissue site, to thereby remodel the sphincter.
Abstract:
The invention provides a method and system for treating disorders in parts of the body. A particular treatment can include on or more of, or some combination of: ablation, nerve modulation, three-dimensional tissue shaping, drug delivery, mapping stimulating, shrinking and reducing strain on structures by altering the geometry thereof and providing bulk to particularly defined regions. The particular body structures or tissues can include one or more of or some combination of region, including: the bladder, esophagus, vagina, penis, larynx, pharynx, aortic arch, abdominal aorta, thoracic, aorta, large intestine, sinus, auditory canal, uterus, vas deferens, trachea, and all associated sphincters. Types of energy that can be applied include radiofrequency, laser, microwave, infrared waves, ultrasound, or some combination thereof. Types of substances that can be applied include pharmaceutical agents such as analgesics, antibiotics, and anti-inflammatory drugs, bulking agents such as biologically non-reactive particles, cooling fluids, or dessicants such as liquid nitrogen for use in cryo-based treatments.
Abstract:
A medical treatment device comprising an elongate probe member having proximal and distal extremities. The elongate probe member has a longitudinal axis and at least one passageway extending from the proximal extremity to the distal extremity. A guide is mounted in the at least one passage of the elongate probe member and has proximal and distal extremities with the distal extremity of the guide being in the vicinity of the distal extremity of the elongate probe member. The guide has an opening in the distal extremity and a lumen extending from the proximal extremity to the opening in the distal extremity. A needle is slidably disposed in the lumen of the guide. The needle is in the form of a tube having an axial lumen extending therethrough. A control mechanism is coupled to the proximal extremity of the elongate probe member and is secured to the needle for advancing and retracting the needle relative to the guide.
Abstract:
An RF treatment apparatus includes a catheter with a catheter lumen. A removable needle electrode is positioned in the catheter lumen in a fixed relationship to the catheter. The needle electrode includes a needle lumen and a needle electrode distal end. A removable introducer is slidably positioned in the needle lumen. The introducer includes an introducer distal end. A first sensor is positioned on a surface of the needle electrode or the insulator. An RF power source is coupled to the needle electrode and a return electrode. An insulator sleeve is slidably positioned around the electrode and includes a second sensor. Resources are associated with the electrodes, sensors as well as the RF power source for maintaining a selected power at the electrode independent of changes in current or voltage.
Abstract:
A medical probe device of this invention comprising a catheter having a control end and a probe end. The probe end includes a stylet guide housing having at least one stylet port and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. A stylet is positioned in at least one of said stylet guide means, the stylet comprising a non-conductive sleeve having a RF electrode lumen and an optional a fluid supply lumen and a temperature sensor lumen therein. At least one portion of an opposed surface of the electrode lumen and the electrode can be spaced apart to define a liquid supply passageway for delivery of medicament liquid. The RF electrode enclosed within the non-conductive sleeve has a distal length optionally having at least one current focusing groove means thereon and a distal tip shaped to focus current crowding on its terminal end, whereby Rf current passing therefrom into surrounding tissue forms a lesion extending outward from the groove and tip. The focusing groove means can be a plurality of annular focusing grooves or a spiral focusing groove thereon.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.