Abstract:
A method for detecting and correcting drift associated with operation of a hybrid tracking system is provided. The method obtains a data signal from a first tracker subsystem having a first tracker latency time; for a defined window of time, the method captures snapshot input data for a second tracker subsystem having a second tracker latency time which is longer than the first tracker latency time; and captures synchronized data from the data signal which corresponds to the defined window of time; wherein the defined window of time comprises a time duration shorter than the second tracker latency time, to capture the snapshot input data. The method further determines a level of drift associated with operation of the first tracker subsystem; and adjusts operation of the first tracker subsystem according to the determined level of drift.
Abstract:
Method, systems and devices for determining for performing enhanced location based trilateration include receiving location information (e.g., waypoints) from one or more external devices, determining the validity of the received location information, performing normalization operations to normalize the received location information, assigning an overall ranking and a device-specific ranking to the location information, and storing the validated and normalized location information in memory. The enhanced location based trilateration may also include selecting four locations (e.g., waypoints) from the memory based on a combination of the overall ranking and the device-specific ranking, and generating a final location value or waypoint based on a result of applying the four selected waypoints to a kalman filter. The output of the kalman filter may also be reported and/or used as the device's current location.
Abstract:
Disclosed herein are methods and systems for mapping irregular features. In an embodiment, a computer-implemented method may include obtaining tracking data that has dead reckoning tracking data for a tracked subject along a path and performing shape correction on the tracking data to provide a first estimate of the path.
Abstract:
A system for determining a new orientation and/or position of an object comprises a sky polarimeter configured to record image data of the sky, a signal processing unit, and logic configured to receive and store in memory the image data received from the sky polarimeter. The logic calculates the Stokes parameters (S0, S1, S2,), DoLP, and AoP from the image data, detects obscurants and filters the obscurants (such as clouds and trees) from the image data to produce a filtered image. The logic is further configured to find the Sun and zenith in the filtered image, and to determine the roll, pitch, yaw, latitude and longitude of the object using the filtered image. A method for determining a new position/orientation of an object comprises recording raw image data using a sky polarimeter, calculating S0, S1, S2, DoLP, and AoP from the image data, detecting obscurants and filtering the obscurants from the image data to produce a filtered image, obtaining last known position/orientation data of the object, finding the Sun and zenith in the filtered image, and determining the roll, pitch, yaw, latitude and longitude of the object using the filtered image.
Abstract:
A method of performing functions by proxy for a set of associated proximate devices is disclosed. In some embodiments, the method may comprise associating a set of user equipments (UEs), wherein upon determination that a first UE in the set is unavailable for performing a requested function, at least one alternate second UE in the associated set of UEs is selected, wherein the at least one second UE is proximate to the first UE and the at least one second UE is available for performing the requested function. The performance of the requested function on the at least one second UE is initiated.
Abstract:
Methods, program products, and systems of using a mobile WAP for location and context purposes are disclosed. In general, in one aspect, a server can estimate an effective location of a wireless access gateway using harvested data. The server can harvest location data from multiple mobile devices. The harvested data can include a location of each mobile device and an identifier of a wireless access gateway that is located within a communication range of the mobile device. In some implementations, the server can identify a mobile wireless access gateway based on a distance comparison. Data indicating the mobility of a wireless access gateway can be used by a mobile device to initiate one or more actions, including managing power of the mobile device, modifying entrance and exit conditions of virtual fences and determining a context of the mobile device.
Abstract:
Techniques for supporting positioning are described. In an example implementation, a method of positioning may be provided which comprises, at a mobile station, receiving at least one signal from a transmitter device. Here, the received signal may comprise an identity of the transmitter device. The mobile station may send an identity of the transmitter device to a location server, and receive one or more positioning assistance messages from the location server, wherein the one or more positioning assistance messages are generated in response to the identity of the transmitter device. The mobile station may subsequently perform positioning based at least in part on the one or more positioning assistance messages received from the location server.
Abstract:
Systems an methods are provided that disclose providing a positioning service for devices based on light received from one or more light sources. This light based positioning service uses light information transmitted by each light source to determine the position of the device. The positioning information can include three dimension position information in a building that can then be used to deliver services and information to a mobile device. The content delivered to a mobile device can include multimedia, text, audio, and/or pictorial information. The positioning information along with other location or positioning information can be used in providing augmented reality or location aware services. The light sources can be independent beacons that broadcast information in visible light at a rate that is undetectable by the human eye. Content can be retrieved from a server over a communications connection.
Abstract:
A location determining device and method of detecting GNSS signals, the method includes: determining candidate GNSS satellites orbiting above the location determining device using an estimated location area, time and predicted orbit data of all GNSS satellites and for the candidate GNSS satellites, determining nominal Dopplers by projecting velocities of the candidate GNSS satellites onto the estimated location area; determining correlation search spaces around the respective nominal Dopplers over estimated code phases; determining correlators for the correlation search spaces and performing correlation; determining receiver clock bias when correlation peaks associated with a majority of GNSS satellites are located at a common Doppler offset; detecting GNSS signals within the common Doppler offset using a set of detectors, one of the set of detectors detecting a correlation peak having a highest probability of detection; and determining a reduced search space in which GNSS signals may be detected.
Abstract:
A portable device, for example an offender monitor, can utilize a location detector, such as a GPS receiver, to provide location information for the device. The portable device can utilize geofences in connection with managing device location and can communicate over a cellular network, for example using a radio to transmit location readings over the network. The location detector and the radio can draw power from an onboard battery. To conserve battery life, the rate of acquiring location readings can be adjusted according to distance between the device and a geofence of interest. For example, a GPS data acquisition rate can increase as the device approaches a geofence and decrease as the device moves away from the geofence.