Abstract:
A (MEMS)-based gas sensor assembly for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. Such gas sensor assembly in a preferred embodiment comprises a free-standing silicon carbide support structure having a layer of a gas sensing material, preferably nickel or nickel alloy, coated thereon. Such gas sensor assembly is preferably fabricated by micro-molding techniques employing sacrificial molds that are subsequently removable for forming structure layers.
Abstract:
The present invention relates to a method and assembly for leak detection in a plasma system. The invention can accomplish not only leak detection, but also leak location while maintaining a plasma within the plasma system. Leak detection for the invention is achieved by obtaining spectral data of the plasma at one or more times while maintaining the plasma within the plasma system and comparing the same to predetermined spectral data of air. Upon a determination that air is present within the plasma system, one or more external surfaces of the plasma system are exposed to a test gas and the spectral data of the plasma is analyzed after each exposure to determine if the test gas is present in the system. If the test gas is present, a determination can be made that the particular external surface to which the test gas was applied is a leak location.
Abstract:
The present invention relates to a method and assembly for leak detection in a plasma system. The invention can accomplish not only leak detection, but also leak location while maintaining a plasma within the plasma system. Leak detection for the invention is achieved by obtaining spectral data of the plasma at one or more times while maintaining the plasma within the plasma system and comparing the same to predetermined spectral data of air. Upon a determination that air is present within the plasma system, one or more external surfaces of the plasma system are exposed to a test gas and the spectral data of the plasma is analyzed after each exposure to determine if the test gas is present in the system. If the test gas is present, a determination can be made that the particular external surface to which the test gas was applied is a leak location.
Abstract:
Multi-pixel sensors such as camera sensors may be configured to capture two-dimensional and/or three-dimensional images of the interior of a process chamber or other fabrication tool. The sensors may be configured to capture pixelated electromagnetic radiation intensity information from within the interior of such process chamber before, during, and/or after processing of a substrate in the chamber. Such sensors may also be utilized for control, predictive, and/or diagnostic applications.
Abstract:
The present invention relates to a device for plasma generation in a wide pressure range. The device comprises a first plasma source (1) in a first discharge chamber (2) in order to generate a first plasma in a low-pressure range, a second plasma source (3) in a second discharge chamber (4) in order to generate a second plasma in a high-pressure range, a first coupling element (5) for coupling the device to a system, in order to guide gas out of the system, and a second coupling element (6) for coupling the device to an optical sensor (12). The first discharge chamber (2) has a first optical connection with at least one optical lens (7, 8) to the second coupling element (6) and the second discharge chamber (4) has a second optical connection with at least one optical lens (8) to the second coupling element (6). This invention further relates to a system for optical gas analysis or gas detection and corresponding methods for plasma generation and for operating the system.
Abstract:
A measurement apparatus for alternating currents and voltages of a physical plasma ignited by applying an alternating high voltage from an alternating high voltage source to a plasma electrode via a high voltage line comprises a current transformer having a measurement winding on a ring core and a cable guide guiding the high voltage line through the ring core. A first measurement alternating voltage dropping over a measurement resistor connected between ends of the measurement winding is a first strictly monotonic increasing function of an amperage of the alternating currents flowing through the high voltage line. A second measurement voltage dropping over a measurement capacitance connected between a center tap of the measurement winding and a reference potential connector is a second strictly monotonic increasing function of an amplitude of the alternating high voltage applied to the plasma electrode with respect to a reference potential at the reference potential connector.
Abstract:
The present invention is aimed to perform precise monitoring of the processed amount by which a workpiece is processed, and includes a measurement unit that measures a concentration or a partial pressure of a reaction product generated while the workpiece is being processed, and an operation unit that calculates the processed amount of the workpiece using an output value of the measurement unit. The measurement unit includes: a laser light source that irradiates target gas containing the reaction product with a laser beam; a photodetector that detects a laser beam having passed through the target gas; and a signal processing unit that calculates the concentration or the partial pressure of the reaction product based on a detection signal of the photodetector. The operation unit includes a time integration unit; a relationship data storage unit; and a processed amount calculation unit.
Abstract:
The present disclosure provides embodiments of a system and method for detecting processing chamber condition. The embodiments include performing a wafer-less processing step in a processing chamber to determine the condition of the chamber walls. Based on an analysis of the residual gas resulting from the wafer-less processing step, an operator or a process controller can determine whether the chamber walls have deteriorated to such an extent as to be cleaned.
Abstract:
The present disclosure provides embodiments of a system and method for detecting processing chamber condition. The embodiments include performing a wafer-less processing step in a processing chamber to determine the condition of the chamber walls. Based on an analysis of the residual gas resulting from the wafer-less processing step, an operator or a process controller can determine whether the chamber walls have deteriorated to such an extent as to be cleaned.
Abstract:
There is provided a gas analyzer apparatus including: a sample chamber which is equipped with a dielectric wall structure and into which only sample gas to be measured is introduced; a plasma generation mechanism that generates plasma inside the sample chamber, which has been depressurized, using an electric field and/or a magnetic field applied through the dielectric wall structure; and an analyzer unit that analyzes the sample gas via the generated plasma. By doing so, it is possible to provide a gas analyzer apparatus capable of accurately analyzing sample gases, even those including corrosive gas, over a long period of time.