摘要:
The present invention relates to an olefinic naphtha and a process for producing lower olefinc from this naphtha. In the process of the present invention for producing lower olefins, preferably ethylene, at least a portion of a hydrocarbon asset is converted to synthesis gas and at least a portion of the synthesis gas is converted to an olefinic naphtha by a Fischer-Tropsch process. At least a portion of the olefinic naphtha is converted in a naphtha cracker to a product stream comprising lower olefins, and at least a portion of the lower olefins from the product stream of the cracker are recovered.
摘要:
Process for synthesis of hydrocarbons by Fischer-Tropsch reaction starting from synthesis gas, operating in three-phase fluidization, the reactor having an exchanger immersed within the fluidized bed and using as coolant a fluid introduced at its boiling point at a pressure slightly greater than the pressure of the process, this boiling point being from 10 to 70° C. below the temperature of the process.
摘要:
A method of economically and efficiently converting natural gas into one or more liquid hydrocarbon products is provided in which the method includes the steps of: (a) building a plant comprising one or more modules for the conversion of natural gas into synthesis gas and the conversion of synthesis gas into heavier hydrocarbons and at least one product module on a transportable platform at a location that facilitates heavy construction; (b) transporting the plant to a location containing sufficient natural gas reserves for operation; (c) installing the plant near the natural gas reserve; and (d) producing intermediate or finished liquid hydrocarbon products.
摘要:
A process for starting up a Fischer-Tropsch reactor includes establishing, in the reactor, an initial charge of molten wax. The initial reactor temperature is below the line-out reactor temperature but is sufficiently high for a Fischer-Tropsch reaction to take place. The reactor contains, in contact with the molten wax, at least a portion of its line-out catalyst inventory. Syngas is fed into the reactor at an initial flow rate below the line-out syngas flow rate. Initially a syngas H2:CO molar ratio is maintained at a higher value than its line-out value, whereafter the syngas H2:CO molar ratio is decreased to its line-out value. The syngas flow rate and the reactor temperature are then increased to their line-out values.
摘要:
A system and process are provided for converting a light hydrocarbon gas to a synthetic heavier hydrocarbon liquid. The system includes an autothermal reformer, a Fischer-Tropsch reactor and a Brayton cycle that are structurally and functionally integrated. In the practice of the process, a mixture of a hydrocarbon feed gas, a compressed air feed and process steam is fed to the autothermal reformer to produce a synthesis gas. The synthesis gas is fed to the Fischer-Tropsch reactor where it is catalytically reacted to produce heavy hydrocarbons. The outlet from the Fischer-Tropsch reactor is separated into water, a low heating value tail gas, and the desired hydrocarbon liquid product. The water is pressurized and heated to generate process steam. The tail gas is heated and fed with compressed air and steam to the Brayton cycle having a combustor and a series of power turbines and compressors. The tail gas and air feed are burned in the combustor to produce a combustion gas that is used to drive a power turbine linked by a shaft to an air compressor, thereby driving the air compressor. The system further includes a plurality of heat exchangers that enable heat to be recovered from the outlet of the autothermal reformer. The recovered heat is used to make the process steam as well as to preheat the hydrocarbon feed gas before it is fed to the autothermal reformer, preheat the synthesis gas before it is fed to the Fischer-Tropsch reactor and preheat the tail gas before it is fed to the combustor.
摘要:
Cyanide and ammonia are removed from a gas, such as a synthesis gas, by catalytically hydrolyzing cyanide in the gas to ammonia, water scrubbing the hydrolyzed gas to dissolve ammonia and at least a portion of remaining cyanide, and optionally, contacting the scrubbed gas with an adsorbent for cyanide and ammonia to form a clean gas containing less than 50 vppb of a combined total of cyanide and ammonia. The clean synthesis gas is then fed into a hydrocarbon synthesis reactor wherein it produces hydrocarbons with substantially reduced catalyst deactivation and cleaner hydrocarbon products.
摘要:
A gas conversion process in which both hydrocarbons and hydrogen are produced from a synthesis gas feed which comprises a mixture of H.sub.2 and CO, uses hydrogen from a portion of the feed for one or more of (i) hydrocarbon synthesis catalyst rejuvenation and (ii) hydroconversion upgrading of at least a portion of the synthesized hydrocarbons. Hydrogen is produced from a slipstream of the synthesis gas fed into the hydrocarbon synthesis reactor by one or more of (i) physical separation means such as pressure swing adsorption and (ii) chemical means such as a water gas shift reactor. If a shift reactor is used due to insufficient capacity of the synthesis gas generator, physical separation means such as pressure swing adsorption will still be used to separate a pure stream of hydrogen from the shift reactor gas effluent.
摘要:
An improved process for the manufacture of organic liquids from gases containing hydrogen and carbon monoxide which avoids the build-up of nitrogen content through the use of a se ies of organic liquid reactors.
摘要:
The present invention is an improvement to a process for the conversion of natural gas to produce higher molecular weight hydrocarbon products, wherein the natural gas is partially oxidized to produce a synthesis gas comprising carbon monoxide and hydrogen, wherein the synthesis gas is catalytically reacted to produce the higher molecular weight hydrocarbon products, wherein the conversion process generates excess steam and wherein oxygen used to partially oxidize the natural gas is produced by an air separation process. The improvement is characterized by operating such air separation process at an elevated pressure so that the feed air to the air separation process is compressed to between 8 and 20 Bar(a); expanding at least a portion of the excess steam generated by the conversion process to generate work and using at least a portion of the generated work to drive the compression requirements of the air separation process.
摘要:
A process for hydrogenation of an aldehyde selected from the group consisting of propanal, n-butanal, and i-butanal comprising contacting said aldehyde with hydrogen in the presence of a hydrogenation catalyst comprising in the reduced state25% to 50% by weight of metallic nickel10% to 35% by weight of nickel oxide4% to 12% by weight of magnesium oxide1% to 5% by weight of sodium oxidethe remainder being a water insoluble support material, wherein the total of said nickel and said nickel oxide is 40% to 70% by weight based on said catalyst, said catalyst having a total BET surface area of 80 to 200 m.sup.2 /g and a total pore volume, determined by mercury porosimetry, of 0,35 to 0.6 ml/g,said total volume consisting of 30% to 60% of said volume from pores having pore radii equal to or less than 40 .ANG., 4% to 10% of said volume from pores having pore radii from more than 40 .ANG. to 300 .ANG., and 30% to 60% of said volume from pores having pore radii from more than 300 .ANG. to 5000 .ANG..