Abstract:
A semiconductor device includes a semiconductor substrate having a main surface, the main surface including a first area formed with a high-frequency circuit element and a second area located around the first area and formed with a low-frequency circuit element. The semiconductor device also includes a sealing resin which covers the main surface; a plurality of first external terminals which are formed above the second area and which are electrically connected to the high-frequency circuit element, the first external terminals protruding from the surface of the sealing resin. The semiconductor device further includes a plurality of second external terminals which are formed above the second area and which are electrically connected to the low-frequency circuit element, the second external terminals protruding from the surface of the sealing resin.
Abstract:
A semiconductor package includes a substrate for mounting and fixing a semiconductor chip thereon and a connecting pattern. The substrate is provided with an elongate opening formed therein. The semiconductor chip is fixed with its surface being mounted on the substrate and with its electrode being aligned within the elongate opening. The electrode of the semiconductor chip is electrically connected to the connecting pattern via wires through the elongate opening. The elongate opening and the wires are sealed with resin.
Abstract:
A test circuit includes an input circuit for inputting data to select a test mode relative to a circuit to be tested and outputting result of selection of the test mode in synchronization with a first clock, a pattern generation circuit for responding to result of selection of the test mode, generating a test pattern in synchronization with a second clock and outputting the test pattern to the circuit to be tested and a comparator circuit for inputting result of test of the circuit to be tested in synchronization with the second clock, and comparing coincidence/non-coincidence between the result of the test and the test pattern supplied to the circuit to be tested. The test circuit further includes an output circuit for holding result of comparison by the comparator circuit and outputting the result of comparison in synchronization with the first clock.
Abstract:
A residue computing device on a Galois Field, for calculating a residue of a product of a multiplier factor and a multiplicand under a modulo, includes a gate for allowing the multiplier factor to pass therethrough when a leading bit of the multiplicand is 1, an adder for adding a temporary residue and a value obtained by the passage, a gate for allowing the modulo to pass therethrough when a leading bit of a summed value of the adder is 1, and a subtractor for subtracting the modulo from the summed value of the adder when the leading bit of the summed value is 1, wherein a process for setting a value obtained by shifting a subtracted value of the subtractor by one bit, as the temporary residue on the basis of the next clock is repeatedly performed for each clock to thereby calculate the residue.
Abstract:
When the substrate bias voltage Vbb lowers by the pumping operation of the charge pump circuit, a drain-to-source resistance of the N-transistor becomes high. When a first power supply voltage Vcc is set at high value, a drain-to-source current of the N-transistor increases (I+ΔI1), however the drain-to-source current decreases (I+ΔI1−ΔI2) by the increase of the drain-to-source current owing to the substrate bias effect so that the increase of the potential of the node N34 caused by the increase of the first power supply voltage VCC is restrained. As a result, a reference level of the substrate bias voltage Vbb does not largely lower than the reference level of the substrate bias voltage. Vbb when the first power supply voltage VCC is in a standard level.
Abstract:
A data storage apparatus includes a flash memory and a control unit that controls the rewriting of data in the flash memory. The flash memory is divided into sectors, each of which is completely erasable in a time T. During a rewriting operation, multiple sectors are erased simultaneously for a time U less than T, and new data are written in a sector that has undergone multiple erasures and is now fully erased. The new data typically replace data stored in a sector that proceeds to be erased during multiple rewriting operations. The duration of each rewriting operation is reduced because the erasing process lasts for time U instead of time T.
Abstract:
A method and apparatus for modifying a power distribution network in a building in order to provide data communication by using a Power Line Carrier (PLC) signal to an approximate electrical central location point of a power distribution system remote from the data entry point of the building. A passive coupler device is attached to a centrally located service panel. The passive coupler receives the Power Line Carrier (PLC) signal from the remote entry point in the building and conditions the signal for entry at the service panel onto each phase of the power distribution network.
Abstract:
A semiconductor integrated device includes a memory cell holding bit information; a pair of bit lines connected to the memory cell via which the bit information is input and output in predetermined cycles; and an output section that latches an output from the memory cell via one bit line of the pair and the other bit line and outputs the bit information acquired from the one bit line as a result of reading from the memory cell, and which pre-charges the pair of bit lines before access to the memory cell. The memory cell has a cutoff circuit that cuts off the other bit line to hold voltage thereof produced by pre-charging when the bit information held in the memory cell is read out.
Abstract:
A method for preventing the deterioration of an electrode caused by the build up of deposits in openings of the electrode. Gas is supplied to each of the openings in order to prevent deposits from adhering to the openings before or after the etching treatment.
Abstract:
In a method of controlling a manufacturing process, operating conditions of plural process steps are monitored during the manufacturing process. A degree of risk is calculated for each of a malfunction operating condition step and subsequent steps. The degree of risk is classified into plural levels and is determined in accordance with a risk point on the basis of the minimum WIP, actual WIP, target WIP, and a weighting factor. A priority of the manufacturing process needing recovery is determined in response to the degree of risk, and an operating condition of the manufacturing process is controlled in response to the priority determination.