Abstract:
In a system and process, organic waste is treated in a reactor to volatilize contaminants such as Perfluoroalkyl substances (PFAS) compounds and/or Contaminants of Emerging Concern (CECs) from the organic waste. Biochar may have reduced or undetectable PFAS compounds or CECs. Most or all of the gas may be thermally oxidized to convert PFAS compounds and/or CECs into less harmful and/or less toxic products or elemental compounds, which may be further removed. Energy may be recovered from one or more parts of the herein described system and process.
Abstract:
In a system and process, sludge from a wastewater treatment plant is treated in a high solids digester, optionally a mechanically mixed wet digester. Sludge (i.e. digestate) from the anaerobic digester is thickened or dewatered. Part of the thickened or dewatered digestate is thermally hydrolysed. The hydrolysed digestate may be, or may be further treated to produce, Class A biosolids. The hydrolysed digestate can be dewatered producing a liquid fraction that is recycled to the digester. Another part of the thickened or dewatered digestate is returned to the digester. The return of thickened or dewatered digestate to the digester allows for a smaller tank to be used (compared to a system without a recycle of thickened or dewatered digestate) while maintaining the same solids residence time (SRT) and volatile solids reduction (VSR). In some examples, the hydraulic residence time (HRT) of the digester is 10 days or less.
Abstract:
An anaerobic digester is fed a feedstock, for example sludge from a municipal wastewater treatment plant, and produces a digestate. The digestate is dewatered into a cake. The cake may be dried further, for example in a thermal drier. The cake is treated in a pyrolysis system to produce a synthesis gas and biochar. The gas is sent to the same or another digester to increase its methane production. The char may be used as a soil enhancer.
Abstract:
The specification describes a system and process for treating a sludge or slurry to produce biochar. The sludge or in slurry may be digestate produced by an anaerobic digester that receives waste activated sludge from a wastewater treatment plant. In a process, digestate is dosed with metal ions, dewatered, and pyrolized. A corresponding system includes a reactor, a dewatering unit and a pyrolysis unit. In an example, the digestate is air stripped in the reactor and a metal salt is added to it. The metal ions form precipitates in the digestate that remain in the biochar. In some cases, a precipitate such as struvite is formed that also increases the phosphorous content of the biochar. The biochar may be used as a soil amendment, wherein the metal and phosphorous are beneficial to the soil.
Abstract:
An ammonia stripper has an aerator and heat exchanger tubing in a tank. The aerator and coil are preferably attached to a frame to form a removable cassette. The cassette may also include a lid for the tank. The tank is preferably rectangular and optionally can be made with the dimensions of a standard shipping container. In a process, water flows through the tank while air bubbles are produced through the aerator. A heating medium such as water flows through the heat exchanger tubing. A gas containing ammonia is withdrawn from a headspace of the tank.
Abstract:
An anaerobic digester is fed a feedstock, for example sludge from a municipal wastewater treatment plant, and produces a digestate. The digestate is dewatered into a cake. The cake may be dried further, for example in a thermal drier. The cake is treated in a pyrolysis system to produce a synthesis gas and biochar. The gas is sent to the same or another digester to increase its methane production. The char may be used as a soil enhancer.
Abstract:
Sludge from an anaerobic digester is treated to recover one or more of fibers, or solids or liquids with a high nutrient content. The solids or liquids can be used as a fertilizer. The fibers can be used in a plant growing medium. Solids are separated from liquids in the sludge and dried. The solids may be dried to produce a flake or pellet. Ammonia in the liquids is recovered and used to produce a concentrated acidic ammonium salt solution. This solution may be mixed with the solids to produce a nitrogen enhanced solid. The fibers and solids or liquids can also be used in combination to produce an enhanced plant growing medium. A device and process for removing ammonia from a liquid can be used in the system or separately.
Abstract:
A method for the treatment of lignocellulose-containing materials wherein such lignocellulose-containing materials, normally resistant to biotreatment, are first subjected to pyrolysis to produce pyrolysis products including pyrogas and char. Exemplary applications of the method include pyrolytic pre-treatment of wastewater sludges, cellulosic wastes, wood, peat, plant residues, low-grade coal, and the like. The pyrogas is introduced into digester sludge in an anaerobic digester.
Abstract:
A method for enhancing the treatment of lignocellulose-containing materials by biotreatment wherein such lignocellulose-containing materials, normally resistant to biotreatment, are first subjected to a low-temperature, long-residence time pyrolysis at about 175° C. to about 325° C. for about 0.1 hour to about 2.0 hours, wherein a substantial portion of the incoming material is distilled into water-soluble compounds amenable to anaerobic biotreatment. Exemplary applications of the method include pyrolytic pre-treatment of wastewater sludges, cellulosic wastes, wood, peat, plant residues, low-grade coal, and the like to enhance methane gas production in anaerobic digestion and/or oxygen-limited or oxygen-starved fermentation to produce ethanol.
Abstract:
A method for enhancing the treatment of lignocellulose-containing materials by biotreatment wherein such lignocellulose-containing materials, normally resistant to biotreatment, are first subjected to a low-temperature, long-residence time pyrolysis at about 175° C. to about 325° C. for about 0.1 hour to about 2.0 hours, wherein a substantial portion of the incoming material is distilled into water-soluble compounds amenable to anaerobic biotreatment. Exemplary applications of the method include pyrolytic pre-treatment of wastewater sludges, cellulosic wastes, wood, peat, plant residues, low-grade coal, and the like to enhance methane gas production in anaerobic digestion and/or oxygen-limited or oxygen-starved fermentation to produce ethanol.