摘要:
In an alcohol fermentation process, oil derived from biomass is hydrolyzed into an extractant available for in situ removal of a product alcohol such as butanol from a fermentation broth. The glycerides in the oil can be catalytically (e.g., enzymatically) hydrolyzed into free fatty acids, which form a fermentation product extractant having a partition coefficient for a product alcohol greater than a partition coefficient of the oil of the biomass for the product alcohol. Oil derived from a feedstock of an alcohol fermentation process can be hydrolyzed by contacting the feedstock including the oil with one or more enzymes whereby at least a portion of the oil is hydrolyzed into free fatty acids forming a fermentation product extractant, or the oil can be separated from the feedstock prior to the feedstock being fed to a fermentation vessel, and the separated oil can be contacted with the enzymes to form the fermentation product extractant. The fermentation product extractant can be contacted with a fermentation broth for in situ removal of a product alcohol.
摘要:
Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.
摘要:
The present invention relates to processes and systems for the production of fermentative alcohols such as ethanol and butanol. The present invention also provides methods for separating feed stream components for improved biomass processing and productivity.
摘要:
A method for the production of 1-butanol by fermentation using a microbial production host is disclosed. The method employs a reduction in temperature during the fermentation process that results in a more robust tolerance of the production host to the butanol product.
摘要:
Methods for the evolution of NADPH specific ketol-acid reductoisomerase enzymes to acquire NADH specificity are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to utilize NADH are described.
摘要:
Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
摘要:
A group of bacterial dihydroxy-acid dehydratases having a [2Fe-2S] cluster was discovered. Bacterial [2Fe-2S] DHADs were expressed as heterologous proteins in bacteria and yeast cells, providing DHAD activity for conversion of 2,3-dihydroxyisovalerate to α-ketoisovalerate or 2,3-dihydroxymethylvalerate to α-ketomethylvalerate. Isobutanol and other compounds may be synthesized in pathways that include bacterial [2Fe-2S] DHAD activity.
摘要:
Methods for the evolution of NADPH specific ketol-add reductoisomerase enzymes to acquire NADH specificity are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to utilize NADH are described.
摘要:
The present invention is related to a recombinant host cell, in particular a yeast cell, comprising a dihydroxy-acid dehydratase polypeptide. The invention is also related to a recombinant host cell having increased specific activity of the dihydroxy-acid dehydratase polypeptide as a result of increased expression of the polypeptide, modulation of the Fe—S cluster biosynthesis of the cell, or a combination thereof. The present invention also includes methods of using the host cells, as well as, methods for identifying polypeptides that increase the flux in an Fe—S cluster biosynthesis pathway in a host cell.
摘要:
Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.