摘要:
Methods of processing substrates having titanium nitride layers are provided. In some embodiments, a method for processing a substrate having a dielectric layer to be etched, a titanium nitride layer above the dielectric layer, and a patterned photoresist layer above the titanium nitride layer, includes etching a pattern into the titanium nitride layer by exposing the titanium nitride layer to a first plasma comprising a chlorine containing gas to form a hard mask; removing titanium nitride etch residues disposed on one or more surfaces of the process chamber and/or substrate by forming a second plasma in the process chamber from a reactive gas comprising at least one of carbon monoxide or carbon dioxide; and etching the dielectric layer through the hard mask with a third plasma comprising a fluorocarbon gas.
摘要:
Methods for forming dual damascene structures in low-k dielectric materials that facilitate reducing photoresist poison issues are provided herein. In some embodiments, such methods may include plasma etching a via through a first mask layer into a low-k dielectric material disposed on a substrate. The first mask layer may then be removed using a process including exposing the first mask layer to a first plasma comprising an oxygen containing gas and at least one of a dilutant gas or a passivation gas, and subsequently exposing the first mask layer to a second plasma comprising an oxygen containing gas and formed using one of either plasma bias power or plasma source power. An anti-reflective coating may then be deposited into the via and atop the low-k dielectric material. A trench may then be plasma etched through a second mask layer formed atop the anti-reflective coating into the low-k dielectric material.
摘要:
A method of etching organic low-k dielectric materials is provided herein. In one embodiment, a method of etching organic low-k dielectric materials includes placing a substrate comprising an exposed organic low-k dielectric material in an etch reactor; supplying a process gas comprising an oxygen-containing gas, a nitrogen-containing gas, and methane (CH4); and forming a plasma from the process gas to etch the organic low-k dielectric material. The organic low-k dielectric material may include polymer-based low-k dielectric materials, photoresists, or organic polymers. The oxygen-containing gas may be oxygen (O2) and the nitrogen-containing gas may be nitrogen (N2).
摘要翻译:本文提供了一种蚀刻有机低k电介质材料的方法。 在一个实施例中,蚀刻有机低k电介质材料的方法包括将包含暴露的有机低k电介质材料的衬底放置在蚀刻反应器中; 提供包含含氧气体,含氮气体和甲烷(CH 4 SO 4)的工艺气体; 以及从所述工艺气体形成等离子体以蚀刻所述有机低k电介质材料。 有机低k介电材料可以包括基于聚合物的低k介电材料,光致抗蚀剂或有机聚合物。 含氧气体可以是氧(O 2/2),含氮气体可以是氮气(N 2 O 2)。
摘要:
Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. This is particularly important for feature sizes less than about 0.5 &mgr;m, where presence of even a limited amount of a corrosive agent can eat away a large portion of the feature. The copper feature integrity is protected by several different mechanisms: 1) The reactive etchant species are designed to be only moderately aggressive, so that an acceptable etch rate is achieved without loss of control over the feature profile or the etch surface; 2) Hydrogen is applied over the etch surface so that it is absorbed onto the etch surface, where it acts as a boundary which must be crossed by the reactive species and a chemical modulator for the reactive species; and 3) Process variables are adjusted so that byproducts from the etch reaction are rendered more volatile and easily removable from the etch surface. In an inductively coupled plasma etch chamber, we have observed that the preferred chlorine reactive species are generated when the chlorine is dissociated from compounds rather than furnished as Cl2 gas.
摘要:
A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures. A second embodiment of the present invention pertains to a specialized etch chemistry useful in the patterning of organic polymeric layers such as low k dielectrics, or other organic polymeric interfacial layers. This etch chemistry is useful for mask opening during the etch of a conductive layer or is useful in etching damascene structures where a metal fill layer is applied over the surface of a patterned organic-based dielectric layer. The etch chemistry provides for the use of etchant plasma species which minimize oxygen, fluorine, chlorine, and bromine content.
摘要:
The present disclosure pertains to a method of patterning a semiconductor device feature which provides for the easy removal of any residual masking layer which remains after completion of a pattern etching process. The method provides for a multi-layered masking structure which includes a layer of high-temperature organic-based masking material overlaid by either a layer of a high-temperature inorganic masking material which can be patterned to provide an inorganic hard mask, or by a layer of high-temperature imageable organic masking material which can be patterned to provide an organic hard mask. The hard masking material is used to transfer a pattern to the high-temperature organic-based masking material, and then the hard masking material is removed. The high-temperature organic-based masking material is used to transfer the pattern to an underlying semiconductor device feature.
摘要:
Etching of carbonaceous layers with an etchant gas mixture including molecular oxygen (O2) and a gas including a carbon sulfur terminal ligand. A high RF frequency source is employed in certain embodiments to achieve a high etch rate with high selectivity to inorganic dielectric layers. In certain embodiments, the etchant gas mixture includes only the two components, COS and O2, but in other embodiments additional gases, such as at least one of molecular nitrogen (N2), carbon monoxide (CO) or carbon dioxide (CO2) may be further employed to etch to carbonaceous layers.
摘要:
A method of etching organic low-k dielectric materials is provided herein. In one embodiment, a method of etching organic low-k dielectric materials includes placing a substrate comprising an exposed organic low-k dielectric material in an etch reactor; supplying a process gas comprising an oxygen-containing gas, a nitrogen-containing gas, and methane (CH4); and forming a plasma from the process gas to etch the organic low-k dielectric material. The organic low-k dielectric material may include polymer-based low-k dielectric materials, photoresists, or organic polymers. The oxygen-containing gas may be oxygen (O2) and the nitrogen-containing gas may be nitrogen (N2).
摘要:
The present invention provides a low-k dielectric etching process with high etching selectivities with respect to adjacent layers of other materials, such as an overlying photoresist mask and an underlying barrier/liner layer. The process comprises the step of exposing a portion of the low-k dielectric layer to a plasma of a process gas that includes a fluorocarbon gas, a nitrogen-containing gas, and an inert gas, wherein the volumetric flow ratio of inert:fluorocarbon gas is in the range of 20:1 to 100:1, and the volumetric flow ratio of fluorocarbon:nitrogen-containing gas is selected to provide a low-k dielectric to photoresist etching selectivity ratio greater than about 5:1 and a low-k dielectric etch rate higher than about 4000 Å/min.
摘要:
The present invention provides a novel etching technique for etching a layer of C-doped silicon oxide, such as a partially oxidized organo silane material. This technique, employing CH2F2/Ar chemistry at low bias and low to intermediate pressure, provides high etch selectivity to silicon oxide and improved selectivity to organic photoresist. Structures including a layer of partially oxidized organo silane material (1004) deposited on a layer of silicon oxide (1002) were etched according to the novel technique, forming relatively narrow trenches (1010, 1012, 1014, 1016, 1030, 1032, 1034 and 1036) and wider trenches (1020, 1022, 1040 and 1042). The technique is also suitable for forming dual damascene structures (1152, 1154 and 1156). In additional embodiments, manufacturing systems (1410) are provided for fabricating IC structures of the present invention. These systems include a controller (1400) that is adapted for interacting with a plurality of fabricating stations (1420, 1422, 1424, 1426 and 1428).