摘要:
An LED includes a compound semiconductor structure having first and second compound layers and an active layer, first and second electrode layers atop the second compound semiconductor layer and connected to respective compound layers. An insulating layer is coated in regions other than where the first and second electrode layers are located. A conducting adhesive layer is formed atop the non-conductive substrate, connecting the same to the first electrode layer and insulating layer. Formed on one side surface of the non-conductive substrate and adhesive layer is a first electrode connection layer connected to the conducting adhesive layer. A second electrode connection layer formed on another side surface is connected to the second electrode layer. By forming connection layers on respective side surfaces of the light-emitting device, manufacturing costs can be reduced.
摘要:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
摘要:
Provided is a nitride semiconductor light emitting diode and a method of manufacturing the same. The method includes sequentially forming a first semiconductor layer, an active layer, and a second semiconductor layer on a substrate, in-situ depositing a mask layer on a region of the surface of the second semiconductor layer, and selectively growing a third semiconductor layer formed in a textured structure on the second semiconductor layer by depositing a semiconductor material on the second semiconductor layer and the mask layer.
摘要:
A nitride-based semiconductor light-emitting device having an improved structure to enhance light extraction efficiency, and a method of manufacturing the same are provided. The method includes the operations of sequentially forming an n-clad layer, an active layer, and a p-clad layer on a substrate; forming a plurality of masking dots on an upper surface of the p-clad layer; forming a p-contact layer having a rough surface on portions of the p-clad layer between the masking dots; forming a rough n-contact surface of the n-clad layer having the same rough shape as the rough shape of the p-contact layer by dry-etching from a portion of the upper surface of the p-contact layer to a desired depth of the n-clad layer; forming an n-electrode on the rough n-contact surface; and forming a p-electrode on the p-contact layer.
摘要:
A method of manufacturing an ohmic contact layer and a method of manufacturing a top emission type nitride-based light emitting device having the ohmic contact layer are provided. The method of manufacturing an ohmic contact layer includes: forming a first conductive material layer on a semiconductor layer; forming a mask layer having a plurality of nano-sized islands on the first conductive material layer; forming a second conductive material layer on the first conductive material layer and the mask layer; and removing the portion of the second conductive material on the islands and the islands through a lift-off process using a solvent. The method ensures the maintenance of good electrical characteristics and an increase of the light extraction efficiency.
摘要:
Provided is a red phosphor represented by formula 1: (Li(2-z)-xMx)(MoO4)y:Euz,Smq (1) where M is an element selected from K, Mg, Na, Ca, Sr, and Ba, 0≦x≦2, 0.5≦y≦5, 0.01≦z≦1.5, and 0.001≦q≦1.0. The red phosphor has emission characteristics such as high brightness when excited by, in particular, an excitation light source of around 405 nm. The red phosphor is 6 times brighter than conventional phosphors. Furthermore, the red phosphor can be used in a red light emitting diode (LED) that has a UV excitation light source, a white LED, and an active dynamic liquid crystal device (LCD). In addition, the white LED using the red phosphor has a color rendering index of 90 or greater and so has excellent color rendition.
摘要:
In a light emitting diode, a first semiconductor layer supplies electrons, and a second semiconductor layer supplies holes. An active layer is formed between the first and second semiconductor layers. The active layer receives electrons and holes, and emits light in response to coupling between the electrons and the holes. A first reflective layer is formed on a bottom portion of the first semiconductor layer, and a second reflective layer is formed on a top portion of the second semiconductor layer. The light emitted from the active layer exits toward a side of the active layer.
摘要:
Example embodiments are directed to a polarized light emitting diode and method of forming the same. The polarized light emitting diode may include a support layer, a semiconductor layer structure, and/or a polarization control layer. The semiconductor layer structure may be formed on the support layer and may include a light-emitting layer. The polarization control layer may be formed on the semiconductor layer structure and may include a plurality of metal nanowires. The polarized light emitting diode may be configured to control the polarization of emitted light. The method of forming a polarized light emitting diode may include forming on a substrate a semiconductor layer structure with a light emitting layer. A reflecting layer may be formed on the semiconductor layer structure with an attached support layer. The substrate may be removed from the semiconductor layer structure and a polarization control layer including metal nanowires may be formed on the semiconductor layer structure.
摘要:
A light emitting device having a monolithic protection element and a method of fabricating the light emitting device are provided. The light emitting device includes: a light emitter having a cathode and an anode; and the resistive protection element connected to the light emitter in parallel through the cathode and the anode. Here, a resistance Rs of the resistive protection element has a value between a forward resistance Rf and a reverse resistance Rr of a current of the light emitter.
摘要:
Provided is a red phosphor represented by formula 1: (Li(2-z)-xMx)(MoO4)y:Euz,Smq (1) where M is an element selected from K, Mg, Na, Ca, Sr, and Ba, 0≦x≦2, 0.5≦y≦5, 0.01≦z≦1.5, and 0.001≦q≦1.0. The red phosphor has emission characteristics such as high brightness when excited by, in particular, an excitation light source of around 405 nm. The red phosphor is 6 times brighter than conventional phosphors. Furthermore, the red phosphor can be used in a red light emitting diode (LED) that has a UV excitation light source, a white LED, and an active dynamic liquid crystal device (LCD). In addition, the white LED using the red phosphor has a color rendering index of 90 or greater and so has excellent color rendition.
摘要翻译:提供了由式1表示的红色荧光体:<?in-line-formula description =“In-line Formulas”end =“lead”?>(Li(2-z)-x M (1)式(1)其中,Y 1,X 2,X 3, 其中M是选自K,Mg,Na,Ca,Sr和Ba的元素,0 <= x <= 2,其中M是选自K,Mg,Na,Ca,Sr和Ba的元素, 0.5 <= y <= 5,0.01 <= z <= 1.5,0.001 <= q <= 1.0。 当由特别是约405nm的激发光源激发时,红色荧光体具有诸如高亮度的发射特性。 红色荧光体比常规荧光体亮6倍。 此外,红色荧光体可以用于具有UV激发光源,白色LED和有源动态液晶装置(LCD)的红色发光二极管(LED)中。 此外,使用红色荧光体的白色LED的显色指数为90以上,因此具有优异的色彩再现性。