Abstract:
Methods and apparatus are provided for inspecting a patterned substrate, comprising: preparing a reference image and a test image, extracting features from the reference image and extracting features from the test image, matching features of the reference image and features of the test image; and comparing features of the reference image and of the test image to identify defects. Embodiments include apparatus for inspecting patterned substrates, computer-readable media containing instructions for controlling a system having a processor for inspecting patterned substrates, and computer program products comprising a computer usable media having computer-readable program code embodied therein for controlling a system for inspecting patterned substrates. The images can be electron-beam voltage-contrast images.
Abstract:
Defects in a patterned substrate are detected by positioning a charged-particle-beam optical column relative to a patterned substrate, the charged-particle imaging system having a field of view (FOV) with a substantially uniform resolution over the FOV; operating the charged-particle-beam optical column to acquire images over multiple subareas of the patterned substrate lying within the FOV by scanning a charged-particle beam over the patterned substrate while maintaining the charged-particle-beam optical column fixed relative to the patterned substrate; and comparing the acquired images to a reference to identify defects in the patterned substrate. The use of a large- FOV imaging system with substantially uniform resolution over the FOV allows acquisition of images over a wide area of the patterned substrate without requiring mechanical stage moves, thereby reducing the time overhead associated with mechanical stage moves. Multiple columns can be ganged together to further improve throughput.
Abstract:
An optical system is automatically focussed by deriving an electrical signal which has a frequency distribution corresponding to the spatial frequency distribution of an image received from a focussing lens; applying to the electrical signal an amplification which is greater at high frequencies than at low frequencies; and adjusting the optical system to maximize the amplified signal.
Abstract:
One embodiment of the present invention is a method of detecting defects in a patterned substrate, including: (a) positioning a charged-particle-beam optical column relative to a patterned substrate, the charged-particle-beam optical column having a field of view (FOV) with a substantially uniform resolution over the FOV; (b) operating the charged-particle-beam optical column to acquire images of a region of the patterned substrate lying within the FOV by scanning the charged-particle beam over the patterned substrate; and (c) comparing the acquired images to a reference to identify defects in the patterned substrate.
Abstract:
Methods and apparatus are disclosed for conditional acquisition of potential measurements in integrated circuits, with the aid of electron-beam probes. The conditional acquisition enables display of waveform images which permit diagnosis of the causes and/or origins of failure in circuits which fail intermittently. Data is acquired in the normal manner on each pass through the test pattern. At the end of each test pattern execution a pass/fail signal from the tester exercising the circuit is used to reject or accept the acquired data. In this fashion, it is possible to accumulate only that data which carries information about the failure of interest and to reject data which does not. Over several test pattern repetitions it is possible to display only that data which shows the failure. Engineers are thus able to efficiently diagnose intermittent failures without the need to change device operating parameters. In one form of the invention, (a) initially a first buffer is defined as a "good-data" buffer and a second buffer is defined as a "temporary-data" buffer; (b) the circuit is probed during application of a test vector pattern to acquire data; (c) the acquired data is summed with stored data from the "good-data" buffer, and the sum is stored in the "temporary-data" buffer; (d) a determination is made whether circuit has failed to operate as expected in response to the pattern and, if the circuit has failed to operate as expected, the second buffer is redefined as a "good-data" buffer and the first buffer is re-defined as a "temporary-data" buffer; and (e) steps (b)-(d) are repeated, such that the data stored in the "good-data" buffer represents failing operation of the circuit.
Abstract:
A method of detecting defects in a patterned substrate includes positioning a charged-particle-beam optical column relative to a patterned substrate, the charged-particle-beam optical column having a field of view (FOV) with a substantially uniform resolution over the FOV; operating the charged-particle-beam optical column to acquire images of a region of the patterned substrate lying within the FOV by scanning the charged-particle beam over the patterned substrate; and comparing the acquired images to a reference to identify defects in the patterned substrate.
Abstract:
Preferential etching during FIB milling can result in a rough, pitted surface and make IC probing/repair operations difficult. Preferential etching is compensated by acquiring a contrast image of the partially-milled sample, preparing mask image data from the contrast image, and controlling further FIB milling using the mask image data. For example, a window is to be milled in a top-layer power plane of an IC to expose a hidden layer. The window is partially milled. A FIB image is acquired and thresholded to produce mask image data. The mask image data distinguish areas where the power plane has been milled through from those where it has not been milled through. Milling is resumed using the mask image data to control effective FIB milling current. The mask image data are updated periodically as the window is milled.
Abstract:
Probe-point placement methods are described. A layout description, a netlist description and a cross-reference description of an IC are retrieved from storage. The data structures associate with each net name a list of polygons. Polygons of a selected net are broken into segments of a specified step size. Each segment is evaluated in accordance with a set of prober rules. Values produced by the prober rules are weighted and combined to obtain a prober score for each segment. The prober score indicates suitability of the corresponding net location for probing. If the best prober score indicates an optimal segment exists for probing, the coordinates of that segment are stored and used to direct a probe to the corresponding location of the IC. If the best prober score indicates no optimal segment exists for probing, each segment of the net is evaluated in accordance with a set of probe-point cutter rules. Values produced by the probe-point cutter rules are weighted and combined to obtain a cutter score for each segment. The cutter score indicates suitability of the corresponding net location for cutting a probe-point hole. A segment having the best cutter score is considered optimal for placing a probe point. The methods can be used, e.g., with electron-beam, focused-ion-beam and laser-beam systems, and with mechanical probe systems.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense layers of feed material on the platform, and a fusing system including an energy source to generate an energy beam having an adjustable intensity profile, an actuator to cause the energy beam to traverse across an outermost layer of feed material, and a controller coupled to the actuator and the energy source. The controller is configured to cause the energy source to adjust the intensity profile of the energy beam on the outermost layer of feed material based on a traversal velocity and/or a traversal direction of the light beam across the outermost layer of feed material.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense layers of feed material on the platform, and a fusing system to direct an energy beam to fuse at least a portion of the outermost layer of feed material. The fusing system includes an energy source to emit the energy beam, a deformable mirror to receive the energy beam and reflect the energy beam, wherein a shape of the deformable mirror defines at least in part an intensity profile of the energy beam on the outermost layer of feed material, an actuator coupled to the deformable mirror, and a controller coupled to the actuator and configured to cause the actuator to deform the shape of the deformable mirror to adjust the intensity profile of the energy beam on the outermost layer of feed material in accordance to a desired profile.