摘要:
Zero-PGM (ZPGM) catalyst materials including pseudo-brookite compositions for use in diesel oxidation catalyst (DOC) applications are disclosed. The disclosed doped pseudo-brookite compositions include A-site partially doped pseudo-brookite compositions, such as, Sr-doped and Ce-doped pseudo-brookite compositions, as well as B-site partially doped pseudo-brookite compositions, such as, Fe-doped, Co-doped Ni-doped, and Ti-doped pseudo-brookite compositions. The disclosed doped pseudo-brookite compositions, including calcination at various temperatures, are subjected to a DOC standard light-off (LO) test methodology to assess/verify catalyst activity as well as to determine the effect of the use of a dopant in an A-site cation or a B-site cation within a pseudo-brookite composition. The disclosed doped pseudo-brookite compositions exhibit higher NO oxidation catalyst activities when compared to bulk powder pseudo-brookite, thereby indicating improved thermal stability and catalyst activity when using a dopant in an A-site cation or in a B-site cation within a pseudo-brookite composition.
摘要:
Zero-Rare Earth Metal (ZREM) and Zero-platinum group metals (ZPGM) compositions of varied binary spinel oxides are disclosed as oxygen storage material (OSM) to be used within TWC systems. The ZREM-ZPGM OSM systems comprise binary non-Cu spinel oxides of Co—Fe, Fe—Mn, Co—Mn, or Mn—Fe. The oxygen storage capacity (OSC) property associated with the non-Cu ZREM-ZPGM OSM systems is determined employing isothermal OSC oscillating condition testing. Further, the OSC test results compare the OSC properties of a ZREM-ZPGM reference OSM system including a Cu—Mn binary spinel oxide and PGM reference catalysts including Ce-based OSMs. The non-Cu spinel oxides ZREM-ZPGM OSM systems exhibit significantly improved OSC properties, which are greater than the OSC property of the Ce-based OSM PGM reference systems.
摘要:
The present disclosure describes zoned three way catalyst (TWC) systems including Rhodium-iron overcoat layers and Nb—Zr—Al Oxide overcoat layers. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. In catalyst systems disclosed herein, closed-coupled catalysts include a first catalyst zone with an overcoat layer formed using a slurry that includes an oxide mixture and an Oxygen Storage Material (OSM). In catalyst systems disclosed herein, oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, catalyst systems disclosed herein include a second catalyst zone with an overcoat layer formed to include a rhodium-iron catalyst. Yet further, catalyst systems disclosed herein include impregnation layers that include one or more of Palladium, Barium, Cerium, Neodymium, and Rhodium.
摘要:
The present disclosure refers to a plurality of process employed for optimization of Zero-PGM washcoat and overcoat loadings on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the total washcoat and overcoat loadings of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum total washcoat and overcoat loadings for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
摘要:
Variations of ZPGM bulk powder catalyst materials, including Cu—Co—Mn ternary spinel systems for TWC applications are disclosed. Bulk powder catalyst samples are prepared employing a plurality of molar ratio variations, including disclosed Cu—Co—Mn spinel on Praseodymium-Zirconia support oxide made by incipient wetness method, or Cu—Co—Mn spinel on Niobium-Zirconia support oxide, which may be synthesized by co-precipitation method. A plurality of bulk powder catalyst samples may be tested by performing isothermal steady state sweep test, employing a flow reactor at inlet temperature of about 450° C., and testing a gas stream from lean to rich condition and influence on TWC performance measured/analyzed, which may lead into significant improvements in the manufacturing of ZPGM bulk powder catalyst materials for TWC applications.
摘要:
Three way catalysts (TWCs) for catalyst systems are disclosed. The disclosed TWC systems include Iron (Fe)-activated Rhodium (Rh) and Barium (Ba)-Palladium (Pd) layers capable of interacting with conventional and/or non-conventional catalyst supports and additives. Variations of TWC system samples are produced including Fe-activated Rh layers deposited onto a washcoat (WC) layer having one or more of an oxygen storage material (OSM). Other TWC system samples are produced including an impregnation (IMPG) layer having loading variations of Ba within a Pd, Ce, and Nd applied onto an OSM WC layer, and a further overcoat layer including Fe-activated Rh is applied onto the IMPG layer. The catalytic performance of disclosed TWC catalysts is evaluated by performing a series of light-off tests, wide pulse perturbation tests, and standard isothermal oxygen storage capacity oscillating tests. Disclosed TWC catalysts exhibit high catalytic performance and significant oxygen storage capacity.
摘要:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as close-coupled (CC) three-way catalysts (TWC) systems with varied material compositions and configurations are disclosed. SPGM CC catalysts in which ZPGM compositions of binary or ternary spinel structures supported onto support oxides are coupled with commercialized PGM UF catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including SPGM CC (with ultra-low PGM loadings) catalyst and commercialized PGM UF catalyst is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM CC TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.
摘要:
Coated gasoline particulate filters (cGPFs) that are produced according to varied material compositions and catalyst configurations are disclosed. The cGPFs include Fe—Ce (rich)-activated Rh compositions that provide greater catalytic functionality. These cGPFs are incorporated within engine systems as components of TWC systems for controlling and reducing engine exhaust emissions. The conversion performance of these TWC systems is assessed and compared employing worldwide harmonized light duty test cycle (WLTC) protocol within a gasoline fueled internal combustion engine. These TWC systems exhibit a significant catalytic performance when compared with the catalytic performance of a PGM-based Original Equipment Manufacturer (OEM) catalyst employed in TWC applications. Further, TWC catalysts are produced including Fe-activated Rh layers comprising dopant elements. The catalytic performance of the TWC catalysts is evaluated by performing light-off and standard isothermal oxygen storage capacity oscillating tests. The TWC catalysts exhibit improved catalytic performance and significant oxygen storage capacity.
摘要:
Modified calibration strategies for controlling an internal combustion engine and monitoring catalyst performance are disclosed. The modified calibration strategies are implemented using an engine and test cell/catalyst chamber setup wherein the engine is a Euro V 1.2 L turbo gasoline direct injection engine and test cells/catalyst chamber are implemented as substantially free of platinum group metals (PGM) catalysts, herein referred as ZPGM catalysts, and synergized PGM (SPGM) catalysts including a stoichiometric spinel structure within the catalyst configuration. The utilization of an open ECU enables the modified calibration of the engine out targeted AFR. The conventional ECU AFR control strategies are not modified to have the ECU AFR control strategies to continue running normally and only the final engine out targeted AFR values are modified by applying offset AFR values. The modified calibration strategies improve engine operation and catalyst conversion efficiency of the ZPGM and SPGM catalysts including the spinel structures.
摘要:
The present disclosure relates to zero-PGM (ZPGM) catalysts including variations of Nickel-doped Copper-Manganese spinel for improved catalyst performance at the stoichiometric condition for use within three-way catalyst (TWC) applications. The ZPGM catalyst material compositions within the aforementioned ZPGM catalysts are expressed with general formulas of Cu1-XNiXMn2O4 (A-site substitution) and Cu1Mn2-XNiXO4 (B-site substitution). The ZPGM catalysts are subjected to a TWC isothermal steady-state sweep test to assess the catalytic performance (e.g., NO conversion). Test results indicate the ZPGM catalysts exhibit higher NO conversions, at stoichiometric condition and lean conditions, when Ni substituted the B-site cation of the Cu—Mn spinel as compared to Ni substituted the A-site cation of the Cu—Mn spinel. Additionally, NO conversions of the ZPGM catalysts are significantly affected, at the stoichiometric condition, by the molar ratio of the Ni dopant within the A or B-site cation of the Cu—Mn spinel.