摘要:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
摘要:
A drive signal for a motor-driven mechanical system has zero (or near zero) energy at an expected resonant frequency of the mechanical system. The drive signal may be provided in a series of steps according to a selected row of Pascal's triangle, wherein the number of steps equals the number of entries from the selected row of Pascal's triangle, each step has a step size corresponding to a respective entry of the selected row of Pascal's triangle, and the steps are spaced from each other according to a time constant determined by an expected resonant frequency of the mechanical system. Alternatively, the stepped drive signal may be provided as a series of uniform steps according to a selected row of Pascal's triangle, in which the steps are provided in a number of spaced intervals corresponding to the number of entries from the selected row of Pascal's triangle, each interval includes a number of steps corresponding to a respective entry from the selected row of Pascal's triangle and the intervals are spaced in time according to a time constant determined from the expected resonant frequency of the mechanical system. These techniques not only generate a drive signal with substantially no energy at the expected resonant frequency, they provide a zero-energy “notch” of sufficient width to tolerate systems in which the actual resonant frequency differs from the expected resonant frequencies.
摘要:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
摘要:
A drive signal for a motor-driven mechanical system has zero (or near zero) energy at an expected resonant frequency of the mechanical system. The drive signal may be provided in a series of steps according to a selected row of Pascal's triangle, wherein the number of steps equals the number of entries from the selected row of Pascal's triangle, each step has a step size corresponding to a respective entry of the selected row of Pascal's triangle, and the steps are spaced from each other according to a time constant determined by an expected resonant frequency of the mechanical system. Alternatively, the stepped drive signal may be provided as a series of uniform steps according to a selected row of Pascal's triangle, in which the steps are provided in a number of spaced intervals corresponding to the number of entries from the selected row of Pascal's triangle, each interval includes a number of steps corresponding to a respective entry from the selected row of Pascal's triangle and the intervals are spaced in time according to a time constant determined from the expected resonant frequency of the mechanical system. These techniques not only generate a drive signal with substantially no energy at the expected resonant frequency, they provide a zero-energy “notch” of sufficient width to tolerate systems in which the actual resonant frequency differs from the expected resonant frequencies.
摘要:
A drive signal for a motor-driven mechanical system has zero (or near zero) energy at an expected resonant frequency of the mechanical system. These techniques not only generate a drive signal with substantially no energy at the expected resonant frequency, they provide a zero-energy “notch” of sufficient width to tolerate systems in which the actual resonant frequency differs from the expected resonant frequencies.
摘要:
Embodiments of the present invention provide a drive signal for a motor-driven mechanical system whose frequency distribution has zero (or near zero) energy at the expected resonant frequency of the mechanical system. The drive signal may be provided as a pair of steps sufficient to activate movement of the mechanical system and then park the mechanical system at a destination position. The steps are spaced in time so as to have substantially zero energy at an expected resonant frequency fR of the mechanical system. The drive signal may be filtered to broaden a zero-energy notch at the expected resonant frequency fR.
摘要:
A system and method is provided for a high accuracy digital temperature sensor (DTS). The system includes a differential analog temperature sensor based on bipolar junctions, providing an output signal obtained as the difference between the VBE of two bipolar junctions. This signal is converted into the digital domain and compared to N−1 threshold digital values for providing piece-wise linear error correction for the variations with temperature of the different error sources within the DTS. This system and method advantageously improve the accuracy of a DTS over an extended temperature range.
摘要:
Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
摘要:
An architecture of an integrated circuit allows for the canceling of noise sampled on a capacitor in the integrated circuit, after an input signal has already been sampled. Thermal noise correlated with an arbitrary input signal may be canceled after selectively controlling a plurality of switching devices during a sequence of clock phases. An auxiliary capacitor may be used to store a voltage equal to the thermal noise and enable the cancellation of the thermal noise from the sampled signal in conjunction with a noise cancellation unit.
摘要:
A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N−1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2π radians or a multiple thereof, where N is greater than 1.