Abstract:
An apparatus, program product and method facilitate the design of a multi-layer circuit arrangement incorporating a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers.
Abstract:
A field-effect transistor has a gate, a source, and a drain. The gate has a via extending through a semiconductor chip substrate from one surface to an opposite surface of the semiconductor chip substrate. The source has a first toroid of ion dopants implanted in the semiconductor chip substrate surrounding one end of the via on the one surface of the semiconductor chip substrate. The drain has a second toroid of ion dopants implanted in the semiconductor chip substrate surrounding an opposite end of the via on the opposite surface of the semiconductor chip substrate.
Abstract:
A method and structures are provided for implementing semiconductor signal-capable capacitors with deep trench and Through-Silicon-Via (TSV) technologies. A deep trench N-well structure is formed and an implant is provided in the deep trench N-well structure with a TSV formed in a semiconductor chip. At least one angled implant is created around the TSV in a semiconductor chip. The TSV is surrounded with a dielectric layer and filled with a conducting material which forms one electrode of the capacitor. A connection is made to one implant forming a second electrode to the capacitor.
Abstract:
A circuit arrangement and method in one aspect utilize thermal-only through vias, extending between the opposing faces of stacked semiconductor dies, to increase the thermal conductivity of a multi-layer semiconductor stack. The thermal vias are provided in addition to data-carrying through vias, which communicate data signals between circuit layers, and power-carrying through vias, which are coupled to a power distribution network for the circuit layers, such that the thermal conductivity is increased above that which may be provided by the data-carrying and power-carrying through vias in the stack. A circuit arrangement and method in another aspect organize the circuit layers in a multi-layer semiconductor stack based upon current density so as to reduce power distribution losses in the stack.
Abstract:
A circuit arrangement and method utilize hybrid bonding techniques that combine wafer-wafer bonding processes with chip-chip and/or chip-wafer bonding processes to form a multi-layer semiconductor stack, e.g., by bonding together one or more sub-assemblies formed by wafer-wafer bonding together with other sub-assemblies and/or chips using chip-chip and/or chip-wafer bonding processes. By doing so, the advantages of wafer-wafer bonding techniques, such as higher interconnect densities, may be leveraged with the advantages of chip-chip and chip-wafer bonding techniques, such as mixing and matching chips with different sizes, aspect ratios, and functions.
Abstract:
A circuit arrangement and method utilize hybrid bonding techniques that combine wafer-wafer bonding processes with chip-chip and/or chip-wafer bonding processes to form a multi-layer semiconductor stack, e.g., by bonding together one or more sub-assemblies formed by wafer-wafer bonding together with other sub-assemblies and/or chips using chip-chip and/or chip-wafer bonding processes. By doing so, the advantages of wafer-wafer bonding techniques, such as higher interconnect densities, may be leveraged with the advantages of chip-chip and chip-wafer bonding techniques, such as mixing and matching chips with different sizes, aspect ratios, and functions.
Abstract:
A circuit arrangement and method in one aspect utilize thermal-only through vias, extending between the opposing faces of stacked semiconductor dies, to increase the thermal conductivity of a multi-layer semiconductor stack. The thermal vias are provided in addition to data-carrying through vias, which communicate data signals between circuit layers, and power-carrying through vias, which are coupled to a power distribution network for the circuit layers, such that the thermal conductivity is increased above that which may be provided by the data-carrying and power-carrying through vias in the stack. A circuit arrangement and method in another aspect organize the circuit layers in a multi-layer semiconductor stack based upon current density so as to reduce power distribution losses in the stack.
Abstract:
A design structure is provided for a dual-mode memory chip supporting a first operation mode in which received data access commands contain chip select data to identify the chip addressed by the command, and control logic in the memory chip determines whether the command is addressed to the chip, and a second operation mode in which the received data access command addresses a set of multiple chips. Preferably, the first mode supports a daisy-chained configuration of memory chips. Preferably the second mode supports a hierarchical interleaved memory subsystem, in which each addressable set of chips is configured as a tree, command and write data being propagated down the tree, the number of chips increasing at each succeeding level of the tree.
Abstract:
An apparatus and method detect microchip tampering by including a capacitance circuit that comprises a protective cover. Dielectric material may be sandwiched between the cover and a backside metal layer, which may be proximate a protected surface of the microchip. Changes in the capacitance of the above circuit caused by alteration of the cover or other component of the capacitance circuit may be sensed and prompt defensive action.
Abstract:
Method and apparatus and associated method of detecting microchip tampering may include a conductive element in electrical communication with multiple sensors for verifying that signal degradation occurs at an expected region of the conductive element. A detected variance from the expected region may automatically trigger an action for impeding an integrated circuit exploitation process.