Abstract:
Apparatus, method and program product detect an attempt to tamper with a microchip by determining that an electrical path comprising one or more connections and a metal plate attached to the backside of a microchip has become disconnected or otherwise altered. A tampering attempt may also be detected in response to the presence of an electrical path that should not be present, as may result from the microchip being incorrectly reconstituted. Actual and/or deceptive paths may be automatically selected and monitored to further confound a reverse engineering attempt.
Abstract:
A semiconductor chip has a gated through silicon via (TSVG). The TSVG may be switched so that the TSVG can be made conducting or non-conducting. The semiconductor chip may be used between a lower level semiconductor chip and a higher semiconductor chip to control whether a voltage supply on the lower level semiconductor chip is connected to or disconnected from a voltage domain in the upper level semiconductor chip. The TSVG comprises an FET controlled by the lower level chip as a switch.
Abstract:
A semiconductor wafer comprises a first chip and a second chip, each chip comprising a core, link layer and physical layer. A kerf area physically connects the two chips on the wafer, and a kerf area interconnect selectively couples the link layers of the two chips while the two physical layers are disabled.
Abstract:
A phase locked loop generates an output corresponding to a source synchronous input and an input link clock signal. A phase locking feedback system receives the input and an input link clock signal and detects phase deviations between the output and the input. The phase locking feedback system also adjusts an adjusted clock signal based on the phase deviations thereby causing the phase locking feedback system to generate the output so that the output has a steady phase relationship with the input. A first mechanism causes the phase locking feedback system not to track phase deviations between the output and the input upon occurrence of a first predefined event, thereby maintaining the adjusted clock signal at a current state.
Abstract:
An integrated circuit assembly and associated method of detecting microchip tampering may include multiple connections in electrical communication with a conductive layer. Defensive circuitry may inhibit analysis of the microchip where a connection no longer connects to the conductive layer. The defensive circuitry may similarly be initiated where a connection unintended to be in electrical communication with the conductive layer is nonetheless connected.
Abstract:
A circuit assembly includes a functional chip and a first capacitor. The functional chip includes a first logic island and a second logic island. The first capacitor is configured to be selectively coupled (e.g., at different times) to a first power supply terminal of the first logic island and a second power supply terminal of the second logic island.
Abstract:
A circuit assembly includes a functional chip and a first capacitor. The functional chip includes a first logic island and a second logic island. The first capacitor is configured to be selectively coupled (e.g., at different times) to a first power supply terminal of the first logic island and a second power supply terminal of the second logic island.
Abstract:
A method of making an integrated circuit package includes forming a through hole in an integrated circuit and assembling a die containing the integrated circuit on a carrier so that the die is mechanically and electrically connected to the carrier. Thereafter, an underfill material is dispensed between the die and the carrier via the through hole.
Abstract:
An apparatus for testing electrical continuity of a surface mounted (SMT) electrical board includes: a printed wiring board having a first surface and an opposite second surface; a conductive signal line disposed on each of the first and second surfaces of the printed wiring board; an electrical component disposed on and electrically connected to the conductive signal line on the first surface; and a through hole extending through the printed wiring board and the conductive signal line on the second surface of the printed wiring board exposing a surface side of the conductive signal line facing the first surface of the printed wiring board. The through hole is unplated in an inside bore defining the through hole and the through hole allows direct access to the conductive signal line on the first surface to test continuity of the conductive signal line on the first surface connected to the electrical component from the second surface of the printed wiring board.
Abstract:
A double-data-rate two synchronous dynamic random access (DDR2 ) memory circuit includes a low-speed input path and a high-speed input path coupled thereto by an input coupling and forming a common input, the common input coupled to a memory core, the memory core having a common output wherein a high-speed output path and a low-speed output path are coupled together by an output coupling and further coupled to the common output of the memory core.