摘要:
According to example configurations herein, a leadframe includes a first conductive strip, a second conductive strip, and a third conductive strip disposed substantially adjacent and substantially parallel to each other. A semiconductor chip substrate includes a first array of switch circuits disposed adjacent and parallel to a second array of switch circuits. Source nodes in switch circuits of the first array are disposed substantially adjacent and substantially parallel to source nodes in switch circuits of the second array. When the semiconductor chip and the leadframe device are combined to form a circuit package, a connectivity interface between the semiconductor chip and conductive strips in the circuit package couples each of the source nodes in switch circuits of the first array and each of the multiple source nodes in switch circuits of the second array to a common conductive strip in the leadframe device.
摘要:
According to example configurations herein, a leadframe includes a first conductive strip, a second conductive strip, and a third conductive strip disposed substantially adjacent and substantially parallel to each other. A semiconductor chip substrate includes a first array of switch circuits disposed adjacent and parallel to a second array of switch circuits. Source nodes in switch circuits of the first array are disposed substantially adjacent and substantially parallel to source nodes in switch circuits of the second array. When the semiconductor chip and the leadframe device are combined to form a circuit package, a connectivity interface between the semiconductor chip and conductive strips in the circuit package couples each of the source nodes in switch circuits of the first array and each of the multiple source nodes in switch circuits of the second array to a common conductive strip in the leadframe device.
摘要:
According to example configurations herein, a leadframe includes a first conductive strip, a second conductive strip, and a third conductive strip disposed substantially adjacent and substantially parallel to each other. A semiconductor chip substrate includes a first array of switch circuits disposed adjacent and parallel to a second array of switch circuits. Source nodes in switch circuits of the first array are disposed substantially adjacent and substantially parallel to source nodes in switch circuits of the second array. When the semiconductor chip and the leadframe device are combined to form a circuit package, a connectivity interface between the semiconductor chip and conductive strips in the circuit package couples each of the source nodes in switch circuits of the first array and each of the multiple source nodes in switch circuits of the second array to a common conductive strip in the leadframe device.
摘要:
According to example configurations herein, a leadframe includes a connection interface. The connection interface can be configured for attaching an electrical circuit to the leadframe. The leadframe also can include a conductive path. The conductive path in the leadframe provides an electrical connection between a first electrical node of the electrical circuit and a second electrical node of the electrical circuit. Prior to making the connection between the electrical circuit and the leadframe, the first electrical node and the second electrical node can be electrically isolated from each other. Subsequent to making connection of the electrical circuit with the leadframe, the conductive path of the leadframe electrically connects the first electrical node and the second electrical node together. Accordingly, the leadframe provides connectivity between nodes of an electrical circuit in lieu of having to provide such connectivity at, for example, a metal interconnect layer of an integrated circuit device.
摘要:
Methods and apparatus are provided for programmable active inductance. The disclosed active inductor devices provide a tunable bandwidth with improved linearity. The disclosed active inductors have a variable frequency response corresponding to a variable inductance of the active inductor. The active inductor comprises a variable resistive circuit having an effective resistance, wherein the variable resistive circuit is comprised of at least one resistor that can be selectively bypassed in the variable resistive circuit to vary the effective resistive. The active inductor has an inductance that can be varied by varying the effective resistance.
摘要:
A phase-locked loop (PLL) employs a phase detector (PD) generating an up/down signal based on the phase error between a data signal and a clock signal input to the phase detector. The PD senses excess jitter and extends the loop bandwidth to accommodate such excess jitter. Phase error is derived by sampling of the clock signal and at least one phase-shifted version of the clock signal by the data signal, and a retimed data is generated by the PD by sampling of the data signal by the clock signal. The sampled clocks are employed to generate a modified control signal with greater resolution in detecting the phase error, which, in turn, increases the loop bandwidth.
摘要:
A MOS-based current-switch/driver multiplexed and coupled with a tapped delay line so as to form a generator for transmitting on unshielded, unfiltered transmission lines highly-symmetric data pulses displaying minimal transient aberrations and minimal common-mode noise. The switch/driver is a basic differential current switch incorporating two MOS output transistors controlled by a novel switching means. The novel switching means ensures the symmetry of the output signals by compensating for the turn-on/turn-off asymmetries inherent in MOS transistors. The compensation is provided by the control circuit interposed between the switch/driver inputs and the control gates of the output transistors, a control circuit which includes deliberately-skewed CMOS inverters and a pair of MOS driver-transistors associated with each output transistor. The output signals from these current generators are referenced to ground. Transient aberrations are largely eliminated in this invention by lengthening the rise and fall times of the transmitted pulses. A tapped delay line is used in conjunction with a plurality of the new switch/drivers in order to form and transmit composite pulses with rise/fall significantly greater than the natural rise-times and fall-times of the individual switches (about 0.6 nsec).
摘要:
According to example configurations herein, a leadframe includes a connection interface. The connection interface can be configured for attaching an electrical circuit to the leadframe. The leadframe also can include a conductive path. The conductive path in the leadframe provides an electrical connection between a first electrical node of the electrical circuit and a second electrical node of the electrical circuit. Prior to making the connection between the electrical circuit and the leadframe, the first electrical node and the second electrical node can be electrically isolated from each other. Subsequent to making connection of the electrical circuit with the leadframe, the conductive path of the leadframe electrically connects the first electrical node and the second electrical node together. Accordingly, the leadframe provides connectivity between nodes of an electrical circuit in lieu of having to provide such connectivity at, for example, a metal interconnect layer of an integrated circuit device.
摘要:
A control circuit generates an output based on the first signal and the second signal by encoding the output to be a multi-state signal having at least three states. A magnitude of the multi-state signal generated by the controller varies depending on binary states of the first signal and the second signal. The controller utilizes the output (i.e., the multi-state signal) to control a switching circuit. A driver circuit receives the output generated by the control circuit. In one embodiment, the multi-state signal has more than two different logic states. The driver decodes the multi-state signal for generating signals to control switches in the switching circuit. One signal generated by the driver circuit is a pulse width modulation signal; another signal generated by the driver circuit is an enable/disable signal.
摘要:
Embodiments of the invention include an apparatus and method for continuously calibrating the frequency of a clock and data recovery (CDR) circuit. The apparatus includes a delay arrangement that generates a gating signal, and a gated voltage-controlled oscillator that is enabled by the gating signal. The gated voltage-controlled oscillator generates a recovered clock signal that is based on the data signal input to the CDR circuit. The apparatus also includes a frequency control loop that continuously calibrates the gated voltage-controlled oscillator in such a way that the frequency of the clock signal generated by the gated voltage-controlled oscillator continues to be one half of the period of the data bits in the input data signal and the clock signal remains synchronized to the center of the data state transitions of the input data signal. Alternatively, a secondary frequency control loop adjusts the amount of delay in the frequency control loop.