摘要:
There is disclosed an adhesively sealed electronic package in which a compensation apparatus is provided for excess adhesive. As a result, excess adhesive does not extend beyond the package perimeter, squeeze-out, or travel along the inner lead fingers interfering with wire bonding. The compensation is a chamfer on the peripheral edges and/or interior edges of the package base component and cover component.
摘要:
There is provided an electronic package assembly having a die attach paddle bonded to the package base by a compliant adhesive. A recessed channel formed in the base is partially overlapped by the die attach paddle. During package sealing, excess adhesive accumulates in the recessed channel, eliminating bridging of the adhesive to the leadframe.
摘要:
There is provided an anodizable aluminum substrate having an increased breakdown voltage. The increase in breakdown voltage is achieved by selecting an appropriate aluminum alloy and appropriate processing parameters. Sealing the anodic film increases the breakdown voltage by decreasing corrosion. A preferred sealant is an epoxy cresol novolac having a low room temperature viscosity that cures to a highly cross-linked polymer.
摘要:
There is provided an anodizable aluminum substrate having an increased breakdown voltage. The increase in breakdown voltage is achieved by selecting an appropriate aluminum alloy and appropriate processing parameters. Sealing the anodic film increases the breakdown voltage by decreasing corrosion. A preferred sealant is an epoxy cresol novolac having a low room temperature viscosity that cures to a highly cross-linked polymer.
摘要:
A semiconductor package is provided that has a rigid metal substrate and a dielectric layer covering a first portion of the rigid metal substrate, with a second portion of the rigid metal substrate being substantially free of the dielectric layer. A semiconductor device is electrically bonded to the second portion of the rigid metal substrate and metal circuit traces defining electrical paths are formed on the dielectric layer, at least one of which contacts the rigid metal substrate through at least one via in the dielectric layer. Additionally, a method is provided for grounding a semiconductor device and at least one circuit trace on a rigid metal substrate substantially covered by a dielectric layer, which includes creating at least one via in the dielectric layer using a laser and creating circuit traces on the dielectric layer, at least one of which contacts the rigid metal substrate through at least one of the vias. The semiconductor is electrically bonded to the rigid metal substrate in an aperture in the dielectric layer.