摘要:
A method is provided for backside processing a semiconductor wafer (10) including applying a polymer based protective coating (16) on the wafer, depositing a barrier layer of ceramic (18) on the protective coating, and coating the ceramic layer with a thermoplastic based adhesive (20). Thereafter, the wafer (10) is bonded to a perforated substrate (22) and then lapped and polished to a desired thickness and patterned with an etch mask. A high temperature plasma etching process is then used to etch via holes in the wafer (10). After etching and subsequent backside processing, the adhesive layer (20) is dissolved in acetone to separate the wafer (10) from the substrate (22). The protective coating (16) is then dissolved with a solvent to separate the ceramic layer (18) from the finished wafer (10).
摘要:
Apparatus and method for continuously forming sputter-coated glass fibers. The apparatus includes a sputter vessel into which freshly drawn fiber is passed before surface contamination can occur. The sputter vessel includes modular sputtering units which are arranged to provide sputter deposition of one or more coatings onto the fiber or capillary tube as it passes through the sputter vessel. Roughing chambers may be provided on either end of the sputter vessel and include orifices sized to allow passage of the fiber through the orifice without contact. An improved sputter coating apparatus is also disclosed.
摘要:
An apparatus for precisely controlling the movement and position of objects. The apparatus includes at least one moveable arm and a system for optically measuring the movement of the arm. The optical measurement system includes an optical fiber loop capable of producing microbend-induced optical attenuation when the loop is physically deformed by the movement of the arm. The apparatus further includes a signal source, a signal detector, and signal processing system for determining the attenuation of the signal between the signal source and the signal detector.
摘要:
A process for depositing an oxide layer on a substrate by exposing the substrate to a selected vapor phase reactant, a chosen oxygen-containing precursor, and a selected physical quenching gas, in the presence of radiation of a selected wavelength. The radiation causes the direct dissociation of the oxygen-containing precursor to form neutral oxygen atoms in an excited electronic state. The quenching gas physically interacts with the oxygen atoms in the excited electronic state to form oxygen atoms in the unexcited electronic state. The latter then react with the vapor phase reactant to form the oxide, which deposits as a layer on the substrate. The rate of reaction to form and deposit the oxide layer is enhanced by the conversion of the excited electronic state oxygen atoms to unexcited electronic state oxygen atoms by the physical quenching gas.
摘要:
A substrate having an undesired native oxide layer formed on the surface thereof is treated at a low temperature by exposure to a chosen vapor phase hydrogen-containing precursor in the presence of radiation of a selected wavelength. Upon radiation-inducement, neutral hydrogen species are formed from the precursor and interact with the native oxide to convert the native oxide to a chemically reduced form. By this process, thermal damage and charge damage to the substrate are avoided and the electrical properties of a subsequently formed device are enhanced.
摘要:
Apparatuses (10, 100), and methods of using same, for the simultaneous thinning of the backside surfaces of a plurality of semiconductor wafers (W) using a non-crystallographic and uniform etching process, are described. The apparatuses (10, 100) include a fixture (12, 102) having a plurality of horizontal receptacles (14, 16, 18, 20, 104, 106, 108, 110) for receiving the semiconductor wafers (W). The loaded fixtures (12, 102) are then immersed into an etchant solution (36, 146) that is capable of isotropically removing a layer of semiconductor material from the backside surface of the semiconductor wafers (W). The etchant solution (36, 146) is preferably heated to about 40° C.-50° C. and constantly stirred with a magnetic stirring bar (48, 158). Once a sufficient period of time has elapsed, the thinned semiconductor wafers (W) are removed from the etchant solution (36, 146). The apparatuses (10, 100) are capable of simultaneously thinning several semiconductor wafers (V) down to a final thickness of about 25 &mgr;m.
摘要:
An optical coating which is stable upon sustained exposure to water vapor is provided by a low-temperature photochemical vapor deposition process. First, there are provided a first vapor phase reactant containing silicon, a second selected vapor phase reactant, and an oxygen-containing precursor which are capable of interacting upon radiation inducement to form the corresponding oxides of the vapor phase reactants. A chosen substrate is exposed to the first and second selected vapor phase reactants in predetermined proportions and the chosen oxygen-containing precursor in the presence of radiation of a predetermined wavelength to induce a reaction to form a coating on the substrate. The coating comprises silicon dioxides containing a predetermined proportion of the second oxide, such as lead oxide. The coating maintains stable optical properties upon sustained exposure to water vapor. Graded index optical elements as well as quarterwave stack structure may be formed by this process.
摘要:
A photosensitive photoresist material which is effective for use as an ion etch barrier layer after patterning. The photoresist composition includes the reaction product of a compound having the general formula R.sub.1 --COO--(CH.sub.2).sub.n --O--R.sub.2 and a silylating agent.
摘要:
A photosensitive photoresist material which is effective for use as an ion etch barrier layer after patterning. The photoresist composition includes the reaction product of a compound having the general formula R.sub.1 --COO--(CH.sub.2).sub.n --O--R.sub.2 and a silylating agent.
摘要:
Hermetically sealed optical fiber arrays comprising a bundle of metal-coated optical fibers which are sealed to each other and to a metal-coated supporting structure. The hermetic seals are formed by a process which uses fluxless solder and preferably a vacuum to enhance application of the solder.