Abstract:
A method and apparatus for displaying an object are provided. The display apparatus includes a display unit which displays an object, a first touch sensing unit which senses a user input by a first input method, a second touch sensing unit which senses a user input by a second input method, a coordinate calculation unit which calculates coordinate values sensed by the first and the second touch sensing units, and a controller which, in response to a user input being simultaneously sensed by the first and the second touch sensing units, compares the coordinate values sensed by the first and the second touch sensing units and determines whether the user input is a single touch input or a multi-touch input, and, according to a result of the determination, controls to display the object on the display unit.
Abstract:
In one embodiment, the non-volatile memory device includes a plurality of normal memory cells, and at least one flag memory cell associated with one of the plurality of normal memory cells. A normal page buffer is configured to store data read from one of the plurality of normal memory cells. The normal page buffer includes a main latch storing the read data. A control circuit is configured to selectively change data stored in the main latch during a read operation based on a state of the flag memory cell.
Abstract:
In one embodiment, the non-volatile memory device includes a plurality of normal memory cells, and at least one flag memory cell associated with one of the plurality of normal memory cells. A normal page buffer is configured to store data read from one of the plurality of normal memory cells. The normal page buffer includes a main latch storing the read data. A control circuit is configured to selectively change data stored in the main latch during a read operation based on a state of the flag memory cell.
Abstract:
Control circuits for a voltage regulator of a semiconductor memory device include an option fuse circuit and a fusing control circuit. The option fuse circuit includes a plurality of fuses and a selection circuit that selects one of the plurality of fuses responsive to a control signal. An output voltage associated with the voltage reset circuit is adjusted responsive to a state of the selected one of the plurality of fuses. A fusing control circuit generates the control signal to allow multiple adjustments of the output voltage by the voltage reset circuit. The option fuse circuit may be a plurality of option fuse circuits and the output voltage may be adjusted responsive to the states of the respective selected ones of the plurality of fuses of the option fuse circuits.
Abstract:
A flash memory device controls a common source line voltage and performs a program verify method. A plurality of memory cells is connected between a bit line and the common source line. A data input/output circuit is connected to the bit line and is configured to store data to be programmed in a selected memory cell of the plurality of memory cells. The data input/output circuit maintains data to be programmed within the data input/output circuit during a program verify operation, and decreases noise in the common source line by selectively precharging the bit line based on the data to be programmed.
Abstract:
A non-volatile memory device includes a feedback circuit and a precharge switching transistor. The feedback circuit generates a feedback signal based on a voltage level of a bitline during a precharge operation. The precharge switching transistor, in response to the feedback signal, controls a precharge current for precharging the bitline. The speed of the precharge operation may be increased and/or mismatch of the bias signals in precharging a plurality of bitlines may be reduced.
Abstract:
A nonvolatile memory system is operated by performing a program loop on each of a plurality of memory cells, each program loop comprising at least one program-verify operation and selectively pre-charging bit lines associated with each of the plurality of memory cells during the at least one program-verify operation.
Abstract:
In one embodiment, the non-volatile memory device includes a plurality of normal memory cells, and at least one flag memory cell associated with one of the plurality of normal memory cells. A normal page buffer is configured to store data read from one of the plurality of normal memory cells. The normal page buffer includes a main latch storing the read data. A control circuit is configured to selectively change data stored in the main latch during a read operation based on a state of the flag memory cell.
Abstract:
A nonvolatile memory device includes a memory cell array, a voltage generator, a page buffer circuit, a row decoder and a control circuit. The memory cell array includes a plurality of mats corresponding to different bit-lines. The voltage generator generates word-line voltages applied to the memory cell array. The page buffer circuit is coupled to the memory cell array through bit-lines. The row decoder is coupled to the memory cell array through word-lines, and the row decoder transfers the word-line voltages to the memory cell array. The control circuit controls the voltage generator, the row decoder and the page buffer circuit based on a command and an address. The control circuit selects a voltage between different voltages to apply the selected different voltages to at least one of the word-lines or at least one of the bit-lines according to a number of mats of the plurality mats, which operate simultaneously.
Abstract:
A non-volatile memory device includes a feedback circuit and a precharge switching transistor. The feedback circuit generates a feedback signal based on a voltage level of a bitline during a precharge operation. The precharge switching transistor, in response to the feedback signal, controls a precharge current for precharging the bitline. The speed of the precharge operation may be increased and/or mismatch of the bias signals in precharging a plurality of bitlines may be reduced.