Abstract:
A method for producing a composite superconductor includes: a structure forming process of forming a structure including a metal covering member (20) including at least one to-be-joined portion, a superconductor (30) arranged inside the metal covering member, and a reinforcing member (40) arranged between the superconductor (30) and the at least one to-be-joined portion; and a joining process of joining thereafter the at least one to-be-joined portion.
Abstract:
An optical image measuring device 1 splits low-coherence light L0 into signal light LS and reference light LR, and splits an optical path of the reference light LR into two optical paths having different optical path lengths to split the reference light LR into two reference lights LRa, LRb. Furthermore, the optical image measuring device 1 makes the reference lights LRa, LRb interfere with the signal light LS propagated through an eye E, generates an interference light LC reflecting a morphology in each of two depth positions (fundus oculi Ef and cornea Ec) of an eye E, and detects the interference light LC to generate a detection signal. Then, the optical image measuring device 1 forms a fundus oculi tomographic image and a cornea tomographic image based on the detection signals, and analyzes the tomographic images to obtain a distance between the cornea and retina of the eye E.
Abstract:
A surface emitting laser includes lower and upper multilayer mirrors, first-conductivity-type and second-conductivity-type contact layers formed between the lower and the upper multilayer mirrors, an active layer formed between the first-conductivity-type and the second-conductivity-type contact layers, a current confinement layer formed between the second-conductivity-type contact layer and the active layer, and first and second composition gradient layers formed facing each other across the current confinement layer. The first composition gradient layer and the second composition gradient layer are formed such that bandgap energy of each of the layers is monotonically decreased from the current confinement layer to an adjacent layer and approach bandgap energy of the adjacent layer in a growth direction.
Abstract:
Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8≦x≦1) and a high-refractive-index layer formed of AlyGa1-yAs (0≦y≦x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
Abstract translation:包括:在上层多层膜反射镜和形成在GaAs衬底上的下层多层膜反射镜之间形成的有源层,其由Al x Ga 1-x As(0.8 @ x @ x As)形成的低折射率层的周期性结构形成, 1)和由AlyGa1-yAs(0 @ y @ x)形成的高折射率层,低折射率层和高折射率层中的至少一个为n型; 以及下电极,设置在所述下多层膜反射镜和所述有源层之间,并且被配置为向所述有源层注入电流。
Abstract:
A measurement data correction method is provided. A living organism is employed as a test sample, fluorescent light generated by excitation light from a fluorescent substance administered to the test sample is received by a light receiving component at a plurality of locations around the periphery of the test sample in a flat plane passing through an observation site of the test sample, and the method is employed for reconstruction of an optical tomographic image of the test sample along the flat plane passing through the observation site. The method includes: generating corrected measurement data, as measurement data to be used in reconstruction of an optical tomographic image along the flat plane passing through the observation site of the test sample, from an obtained first measurement data and an obtained first standardization measurement data using a defined correction coefficient.
Abstract:
A vertical cavity surface emitting laser element as described herein can suppress of any dislocation, when a distributed Bragg reflector (DBR) mirror is formed on the onto a substrate (1). The vertical cavity surface emitting laser can be designed so that an average of strain in the DBR mirror (2) and a layer thickness of the DBR mirror (2) are in reference to a curvature of the substrate (1) in order to satisfy a predetermined condition, and then nitrogen can be added into the DBR mirror (2) with a composition that corresponds to a designed average of strain in the DBR mirror (2). For example, the average composition of nitrogen can be designed to be between 0.028% and 0.390%.
Abstract:
By making use of a vertical cavity surface emitting laser element (100) in accordance with the present invention, it becomes able to suppress as properly an occurrence of any dislocation therein even in a case where there is formed a DBR mirror onto a substrate (1), by designing to be set for between an average of strain in a DBR mirror at the lower side thereof (2) and a layer thickness of such the DBR mirror at the lower side thereof (2) in reference to a curvature of the substrate (1) in order to be satisfied a predetermined condition, and then by performing an addition of nitrogen into the DBR mirror at the lower side thereof (2) with a composition thereof that corresponds to the designed average of strain in the DBR mirror at the lower side thereof (2) to be set therefor, such as the composition of between 0.028% and 0.390% or the like, in reference to the relationship of between the average of strain in the DBR mirror at the lower side thereof (2) and an average of the composition of the nitrogen that is included in the DBR mirror at the lower side thereof (2).
Abstract:
A projection lens unit includes a magnifying optical system is provided. A second magnifying lens barrel has a shape of double circular cylinders, and a first magnifying lens barrel is fitted to an outer circular cylinder. Further, a second magnifying lens is in contact with and fixed to a step portion of inner circular cylinder. In a manufacturing step thereof, the second magnifying lens is inserted into the inner circular cylinder of the second magnifying lens barrel to be into contact with the step portion. A front end portion of the inner circular cylinder is plastically deformed by being heated and pressed to fix the second magnifying lens. An outer peripheral edge of the front end portion has a curved surface. The curved surface of the front end portion is made to be smaller in radius of curvature than the second magnifying lens.
Abstract:
A time point at which a predetermined period elapses since the start of use of a copying machine as a detection subject after factory shipment or repair is obtained. Pieces of set information, which are combinations of various types of information until the time point is reached are sequentially stored to construct a normal set information group. After the time point is reached, presence of abnormality in the copying machine is determined based on the normal set information group and the various types of information obtained.
Abstract:
[Task] To provide a fundus oculi observation device capable of effectively performing dispersion compensation.[Means for Resolution] A fundus oculi observation device 1 functions as an optical image measurement device that splits a broadband light into a signal light LS and a reference light LR, superimposes the signal light LS propagated through a fundus oculi Ef and the reference light LR propagated through a reference mirror 174 to generate an interference light LC and forms an image of the fundus oculi Ef. The device 1 corrects the influence of dispersion of the reference light LR based on ocular information 212a, generates the interference light LC after the correction, detects this interference light LC, and forms an OCT image.