摘要:
Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8≦x≦1) and a high-refractive-index layer formed of AlyGa1-yAs (0≦y≦x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
摘要翻译:包括:在上层多层膜反射镜和形成在GaAs衬底上的下层多层膜反射镜之间形成的有源层,其由Al x Ga 1-x As(0.8 @ x @ x As)形成的低折射率层的周期性结构形成, 1)和由AlyGa1-yAs(0 @ y @ x)形成的高折射率层,低折射率层和高折射率层中的至少一个为n型; 以及下电极,设置在所述下多层膜反射镜和所述有源层之间,并且被配置为向所述有源层注入电流。
摘要:
Provided is an optical integrated device comprising a first waveguide that is formed on a substrate and includes a first optical path; an electrode formed on the first waveguide; a second waveguide that is formed on the substrate and includes a second optical path; and a transparent waveguide that is formed on the substrate between the first waveguide and the second waveguide, and includes a transparent core that serves as an optical path and is formed of a material having higher bandgap energy than the first optical path. The electrode is formed above the first waveguide and is not formed above the transparent waveguide, and elements including the first waveguide are optically active elements that operate according to current injected thereto.
摘要:
An interfacial reaction suppressing layer 12 formed between an oxide layer including a ZnO single crystal substrate 11 and a nitride layer including an InGaN semiconductor layer 13 restrains the interfacial reaction between the oxide layer and the nitride layer and formation of a reaction layer (Al2ZnO4) at the interface, which makes it possible to grow and thermally treat the InGaN semiconductor layer 13 at a high temperature. Thus, a crystal quality of the InGaN semiconductor layer 13 is improved.
摘要:
A semiconductor laser element includes: a window region including a disordered portion formed by diffusion of a group-III vacancy, the diffusion promoted by providing on the window region a promoting film that absorbs a predetermined atom; a non-window region including an active layer of a quantum well structure; and a difference equal to or larger than 50 meV between an energy band gap in the window region and an energy band gap in the non-window region.
摘要:
A semiconductor laser element includes a first electrode, a second electrode, a first reflecting mirror, a second reflecting mirror, and a resonator. The resonator includes an active layer, a current confinement layer, a first semiconductor layer having a first doping concentration formed at a side opposite to the active layer across the current confinement layer, and a second semiconductor layer having a second doping concentration higher than the first doping concentration formed between the first semiconductor layer and the current confinement layer. The first electrode is provided to contact a part of a surface of the first semiconductor layer. The first semiconductor layer has a diffusion portion into which a component of the first electrode diffuses. The second semiconductor layer contacts the diffusion portion. The second semiconductor layer is positioned at a node of a standing wave at a time of laser oscillation of the semiconductor laser element.
摘要:
There is provided a semiconductor laser that includes a dielectric multilayer mirror (116) with a structure including high-refractive-index dielectric layers and low-refractive-index dielectric layers arranged periodically, and a cavity (110) that includes the dielectric multilayer mirror (116), on at least one facet thereof, and an active layer (105). A non-linear layer that is non-linear with respect to primary mode laser light is formed in at least one layer of either the high-refractive-index dielectric layers or the low-refractive-index dielectric layers.
摘要:
A semiconductor laser element includes a first electrode, a second electrode, a first reflecting mirror, a second reflecting mirror, and a resonator. The resonator includes an active layer, a current confinement layer, a first semiconductor layer having a first doping concentration formed at a side opposite to the active layer across the current confinement layer, and a second semiconductor layer having a second doping concentration higher than the first doping concentration formed between the first semiconductor layer and the current confinement layer. The first electrode is provided to contact a part of a surface of the first semiconductor layer. The first semiconductor layer has a diffusion portion into which a component of the first electrode diffuses. The second semiconductor layer contacts the diffusion portion. The second semiconductor layer is positioned at a node of a standing wave at a time of laser oscillation of the semiconductor laser element.
摘要:
Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8≦x≦1) and a high-refractive-index layer formed of AlyGa1-yAs (0≦y≦x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
摘要翻译:包括:在上层多层膜反射镜和形成在GaAs衬底上的下层多层膜反射镜之间形成的有源层,其由Al x Ga 1-x As(0.8& N e; x&nlE)形成的低折射率层的周期性结构 ; 1)和由AlyGa1-yAs(0< nlE; y≦̸ x)形成的高折射率层,所述低折射率层和所述高折射率层中的至少一个为n型; 以及下电极,设置在所述下多层膜反射镜和所述有源层之间,并且被配置为向所述有源层注入电流。
摘要:
An interfacial reaction suppressing layer 12 formed between an oxide layer including a ZnO single crystal substrate 11 and a nitride layer including an InGaN semiconductor layer 13 restrains the interfacial reaction between the oxide layer and the nitride layer and formation of a reaction layer (Al2ZnO4) at the interface, which makes it possible to grow and thermally treat the InGaN semiconductor layer 13 at a high temperature. Thus, a crystal quality of the InGaN semiconductor layer 13 is improved.
摘要:
A semiconductor light emitting element of the present invention comprises: a zinc oxide (ZnO) single crystal substrate 12 with a substrate surface of a plane orientation insusceptible to a piezo electric field; a Lattice-matched layer 13 formed on the substrate surface to be lattice-matched with the ZnO single crystal substrate 12; an active layer 15 of indium gallium nitride (InxGa1-xN, 0
摘要翻译:本发明的半导体发光元件包括:氧化锌(ZnO)单晶衬底12,其具有不受压电场敏感的面取向的衬底表面; 形成在与ZnO单晶衬底12晶格匹配的衬底表面上的晶格匹配层13; 氮化铟镓(In x Ga 1-x N,0