摘要:
A heat exchanger apparatus and method of manufacturing comprising: an interface layer for cooling a heat source and configured to pass fluid therethrough, the interface layer having an appropriate thermal conductivity and a manifold layer for providing fluid to the interface layer, wherein the manifold layer is configured to achieve temperature uniformity in the heat source preferably by cooling interface hot spot regions. A plurality of fluid ports are configured to the heat exchanger such as an inlet port and outlet port, whereby the fluid ports are configured vertically and horizontally. The manifold layer circulates fluid to a predetermined interface hot spot region in the interface layer, wherein the interface hot spot region is associated with the hot spot. The heat exchanger preferably includes an intermediate layer positioned between the interface and manifold layers and optimally channels fluid to the interface hot spot region.
摘要:
A heat exchanger and method of manufacturing thereof comprises an interface layer for cooling a heat source. The interface layer is coupled to the heat source and is configured to pass fluid therethrough. The heat exchanger further comprises a manifold layer that is coupled to the interface layer. The manifold layer includes at least one first port that is coupled to a first set of individualized holes which channel fluid through the first set. The manifold layer includes at least one second port coupled to a second set of individualized holes which channel fluid through the second set. The first set of holes and second set of holes are arranged to provide a minimized fluid path distance between the first and second ports to adequately cool the heat source. Preferably, each hole in the first set is positioned a closest optimal distance to an adjacent hole the second set.
摘要:
A microchannel heat exchanger coupled to a heat source and configured for cooling the heat source comprising a first set of fingers for providing fluid at a first temperature to a heat exchange region, wherein fluid in the heat exchange region flows toward a second set of fingers and exits the heat exchanger at a second temperature, wherein each finger is spaced apart from an adjacent finger by an appropriate dimension to minimize pressure drop in the heat exchanger and arranged in parallel. The microchannel heat exchanger includes an interface layer having the heat exchange region. Preferably, a manifold layer includes the first set of fingers and the second set of fingers configured within to cool hot spots in the heat source. Alternatively, the interface layer includes the first set and second set of fingers configured along the heat exchange region.
摘要:
A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
摘要:
A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
摘要:
An assembly is provided which includes a first circuit panel having a top surface, a first dielectric element and first conductive traces disposed on the first dielectric element. In addition, a second circuit panel has a bottom surface, a second dielectric element and second conductive traces disposed on the second dielectric element, where at least a portion of the second circuit panel overlies at least a portion of the first circuit panel. The assembly further includes an interconnect circuit panel having a third dielectric element which has a front surface, a rear surface opposite the front surface, a top end extending between the front and rear surfaces, a bottom end extending between the front and rear surfaces, and a plurality of interconnect traces disposed on the dielectric element. The bottom end of the interconnect element abuts the top surface of the first circuit panel and the top end abuts the bottom surface of the second circuit panel, where at least some of the first conductive traces are in conductive communication with the second conductive traces through the interconnect traces.
摘要:
A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
摘要:
A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
摘要:
A method and system for cooling a heat source are presented. The system includes a fluid heat exchanger, a pump, a thermoelectric device having a cooling portion and a heating portion, and a heat rejector configured to be in thermal contact with at least a portion of the heating portion of the thermoelectric device. The pump is coupled with the fluid heat exchanger and configured to pass a fluid therethrough. The thermoelectric device is configured along with the heat exchanger in a cooling system to enhance the cooling efficiency of the system.
摘要:
A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.