摘要:
The inventive concepts provide semiconductor memory devices and methods for fabricating the same. The semiconductor memory device may include a plurality of gates vertically stacked on a substrate, a vertical channel filling a channel hole vertically penetrating the plurality of gates, and a memory layer vertically extending on an inner sidewall of the channel. The vertical channel may include a lower channel filling a lower region of the channel hole and electrically connected to the substrate, and an upper channel filling an upper region of the channel hole and contacting the lower channel. The upper channel may extend along the memory layer and the lower channel in the upper region of the channel hole and may have a uniform thickness.
摘要:
Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
摘要:
A method of fabricating a three-dimensional (3D) semiconductor memory device is provided. Sacrificial layers and insulating layers are alternately and repeatedly stacked on a top surface of a substrate to form a thin layer structure. A channel structure penetrating the thin layer structure is formed to be in contact with the substrate. A trench penetrating the thin layer structure is formed. The sacrificial layers, the insulating layers and the substrate are exposed in the trench. A recess region formed in the substrate exposed by the trench. A semiconductor pattern filling is formed the recess region. The sacrificial layers exposed by the trench are replaced with gate patterns.
摘要:
Provided are a semiconductor device and a method of manufacturing the semiconductor device. The semiconductor device includes a charge storage pattern formed on a substrate; a dielectric pattern formed on the charge storage pattern; a first conductive pattern including silicon doped with a first impurity of a first concentration, the first conductive pattern being disposed on the dielectric pattern; and a second conductive pattern including metal silicide doped with a second impurity of a second concentration, the second conductive pattern being disposed on the first conductive pattern. The first concentration may be higher than the second concentration.
摘要:
Provided are three-dimensional semiconductor memory devices and methods of forming the same. The device includes a substrate, conductive patterns stacked on the substrate, and an active pattern penetrating the conductive patterns to be connected to the substrate. The active pattern may include a first doped region provided in an upper portion of the active pattern, and a diffusion-resistant doped region overlapped with at least a portion of the first doped region. The diffusion-resistant doped region may be a region doped with carbon.
摘要:
Memory devices include a stack of interleaved conductive patterns and insulating patterns disposed on a substrate. A semiconductor pattern passes through the stack of conductive patterns and insulating patterns to contact the substrate, the semiconductor pattern having a graded grain size distribution wherein a mean grain size in a first portion of the semiconductor pattern proximate the substrate is less than a mean grain size in a second portion of the semiconductor pattern further removed from the substrate. The graded grain size distribution may be achieved, for example, by partial laser annealing.
摘要:
Provided is a nonvolatile memory device. The nonvolatile memory device includes: a tunnel insulation layer on a semiconductor substrate; a floating gate electrode including a bottom gate electrode doped with carbon and contacting the tunnel insulation layer and a top gate electrode on the bottom gate electrode; a gate interlayer insulation layer on the floating gate electrode; and a control gate electrode on the gate interlayer insulation layer.
摘要:
Provided are three-dimensional semiconductor memory devices and methods of forming the same. The device includes a substrate, conductive patterns stacked on the substrate, and an active pattern penetrating the conductive patterns to be connected to the substrate. The active pattern may include a first doped region provided in an upper portion of the active pattern, and a diffusion-resistant doped region overlapped with at least a portion of the first doped region. The diffusion-resistant doped region may be a region doped with carbon.
摘要:
A method for manufacturing a three-dimensional semiconductor memory includes forming a plurality of stacked structures disposed on a substrate to be spaced apart from each other, each of the stacked structures including a plurality of dielectric patterns and a plurality of polysilicon patterns alternately stacked, forming a metal layer to cover sidewalls of the stacked structures and a top surface of the substrate exposed between the stacked structures, and forming stacked gate electrodes on the substrate and a conductive line in the substrate by performing a silicidation process between the metal layer and each of the polysilicon patterns and the substrate.
摘要:
Methods for fabricating a semiconductor device are provided. In the methods, first material layers and second material layers may be alternatingly and repeatedly stacked on a substrate. An opening penetrating the first material layers and the second material layers may be formed. A semiconductor solution may be formed in the opening by using a spin-on process.