摘要:
A method of fabricating a semiconductor device having a silicon nitride layer substantially free of impurities includes forming a silicon nitride layer on a semiconductor substrate and annealing the semiconductor substrate having the silicon nitride layer in an atmosphere of ammonia (NH3) gas to remove impurities from the silicon nitride layer. The silicon nitride layer may be formed using BTBAS as a silicon precursor.
摘要:
A nonvolatile memory device and a method of fabricating the same are disclosed. The method includes forming a tunnel oxide film and a conductive film for a floating gate on a semiconductor substrate; nitriding the top surface of the conductive film for a floating gate; oxidizing the nitrided top surface of the conductive film for a floating gate that is nitrided, forming an ONO film comprising a lower oxide film, a nitride film and an upper oxide film sequentially laminated on the surface-modified conductive film for a floating gate to complete formation of the dielectric film; and forming the conductive film for a control gate on the dielectric film.
摘要:
A method is provided for forming a titanium nitride layer in a metal-insulator-metal (MIM) capacitor. The deposition of a titanium nitride layer is carried out by means of an MOCVD method using a metallo-organic material as a source gas, followed by a rapid thermal process (RTP) at a high temperature. Through the RTP, impurities in the titanium nitride layer are removed and a surface area of the titanium nitride layer is increased in comparison with the titanium nitride layer before the RTP. The titanium nitride layer with increased surface area is useful for a lower electrode of a MIM capacitor.
摘要:
Disclosed herein is a method for the fabrication of a capacitor of semiconductor device, which is capable of increasing a charge storage capacitance of the capacitor while generation of leakage current in the capacitor. The method comprises the steps of: forming a ruthenium film as a lower electrode on a semiconductor substrate; forming a TaON film having a high dielectric constant on the ruthenium film; and forming a upper electrode on the TaON film.
摘要:
There is disclosed a method of making a high dielectric capacitor of a semiconductor device using Ta2O5, BST((Ba1−xSrx)TiO3) etc. of a high dielectric characteristic as a capacitor dielectric film in a very high integrated memory device. The present invention has its object to provide a method of manufacturing a high dielectric capacitor of a semiconductor device, which can effectively remove carbon contained within the thin film after deposition of the BST film and defects of oxygen depletion caused upon deposition of the thin film and which can also remove carbon contained within the thin film after deposition of the tantalum oxide film and defects of oxygen depletion caused upon deposition of the thin film, without further difficult processes or without any deterioration of the electrical characteristic of the capacitor. It employs the technology which is able to effectively removing defects of carbon and oxygen depletion within the thin film, by forming a plasma O3 gas having a good reactivity and by processing the plasma for the BST thin film and tantalum oxide film. Thus, it can extend the lifetime of the activated oxygen of oxygen, which had been a problem in processing a conventional UV-O3, by means of plasma process using O3 gas. Therefore, it can effectively remove defects of carbon and oxygen within the BST thin film and tantalum oxide film without complicating the process or deteriorating the electrical characteristic of the capacitor. The present invention also proposes a detailed process condition, which can optimize the plasma process using O3 gas.
摘要:
A Czochralski method for producing monocrystals wherein a single crystal silicon rod is pulled from a silicon melt contained in a crucible within a chamber. After pulling the single crystal silicon rod from a silicon melt in a chamber, the chamber is cooled by flowing a gas having a thermal conductivity of at least about 55.times.10.sup.-5 g.cal./(sec..multidot.cm.sup.2)(.degree.C./cm) at 800.degree. K into the chamber. The preferred cooling gas is a helium-containing gas.
摘要:
A silicon single crystal prepared by the Czochralski method including a neck having an upper portion, an intermediate portion, and a lower portion. The upper portion contains dislocations. The intermediate portion is between the upper and lower portions. A majority of the intermediate and lower portions has a diameter greater than 10 millimeters, and the lower portion is free of dislocations. The crystal also includes an outwardly flaring segment adjacent the lower portion of the neck, and a body adjacent the outwardly flaring segment.
摘要:
A bonded, SOI wafer which has stepped isolation trenches and sublayer interconnections first formed in a bulk silicon wafer. After these process steps are complete, a thin polysilicon layer is formed on the planarized upper surface of the bulk silicon wafer. This thin polysilicon layer is then bound to an oxide layer on the surface of a separate wafer to form a bonded silicon-on-oxide structure. The entire assembly is, in effect inverted, and what had been the lower surface of the bulk silicon wafer, is removed to the bottom of the deepest trench step. In this bonded SOI structure, regions between the trenches are deep and suitable for bipolar device fabrication, while the trench steps form shallow regions suitable for fabrication of CMOS devices.
摘要:
A semiconductor structure including a doped semiconductor substrate defining a surface. A buffer layer of epitaxial semiconductor material overlies the substrate surface, the buffer layer having a relatively higher dopant concentration than the substrate and being virtually free from oxygen precipitation. A layer of intrinsic semiconductor material overlies the buffer layer, and a device layer of epitaxial semiconductor material is situated on the intrinsic layer. The device layer is formed to have a relatively lower dopant concentration than the first layer. Isolation regions extend from a surface of the device layer into the buffer layer for forming an electrically isolated device region in the device layer. At least one active device is formed in the isolated device region.
摘要:
A method of fabricating a semiconductor device having a silicon nitride layer substantially free of impurities includes forming a silicon nitride layer on a semiconductor substrate and annealing the semiconductor substrate having the silicon nitride layer in an atmosphere of ammonia (NH3) gas to remove impurities from the silicon nitride layer. The silicon nitride layer may be formed using BTBAS as a silicon precursor.