Abstract:
An image sensor includes a pixel array and a row driver block. The pixel array includes a plurality of subpixel groups, each including a plurality of subpixels. Each of the plurality of subpixels is configured to generate a subpixel signal corresponding to photocharge accumulated in response to a photon. The row driver block is configured to generate a first control signal to control the subpixels included in each of the plurality of subpixel groups to accumulate the photocharge in parallel from a first time point to a second time point.
Abstract:
A method of growing a Group-III nitride crystal includes forming a buffer layer on a silicon substrate and growing a Group-III nitride crystal on the buffer layer. The method of growing of a Group-III nitride crystal is executed through metal-organic chemical vapor deposition (MOCVD) during which a Group-III metal source and a nitrogen source gas are provided. The nitrogen source gas includes hydrogen (H2) and at least one of ammonia (NH3) and nitrogen (N2). At least a partial stage of the operation of growing the Group-III nitride crystal can be executed under conditions in which a volume fraction of hydrogen in the nitrogen source gas ranges from 20% to 40% and a temperature of the silicon substrate ranges from 950° C. to 1040° C.
Abstract:
A mobile system may comprise a three-dimensional (3D) image sensor on a first surface of the mobile system configured to perform a first sensing to detect proximity of a subject and a second sensing to recognize a gesture of the subject by acquiring distance information for the subject; and/or a display device on the first surface of the mobile system to display results of the first sensing and the second sensing. A mobile system may comprise a light source unit; a plurality of depth pixels; and/or a plurality of color pixels. The light source unit, the plurality of depth pixels, or the plurality of color pixels may be activated based on an operation mode of the mobile system.
Abstract:
Provided are a nitride semiconductor light-emitting device comprising a polycrystalline or amorphous substrate made of AlN; a plurality of dielectric patterns formed on the AlN substrate and having a stripe or lattice structure; a lateral epitaxially overgrown-nitride semiconductor layer formed on the AlN substrate having the dielectric patterns by Lateral Epitaxial Overgrowth; a first conductive nitride semiconductor layer formed on the nitride semiconductor layer; an active layer formed on the first conductive nitride semiconductor layer; and a second conductive nitride semiconductor layer formed on the active layer; and a process for producing the same.
Abstract:
Apparatus and method for refining subject activity classification for the recognition of daily activities of a subject, and a system for recognizing daily activities using the same. The refining apparatus improves the correctness of subject activity classification using daily activities of a subject, activation time information of sensors mounted on objects associated with the daily activities of the subject, and the suitability of a continuous activity pattern in relation to the daily activities. This improves the correctness of subject activity classification that becomes basic information in daily activity analysis.
Abstract:
There is provided a nitride semiconductor device including an active layer of a superlattice structure. The nitride semiconductor device including: a p-type nitride semiconductor layer; an n-type nitride semiconductor layer; and an active layer disposed between the p-type and n-type nitride layers, the active layer comprising a plurality of quantum barrier layers and quantum well layers deposited alternately on each other, wherein the active layer has a superlattice structure where the quantum barrier layer has a thickness for enabling a carrier injected from the p-type and n-type nitride semiconductor layers to be tunneled therethrough, and at least one of the quantum barrier layers has an energy band gap greater than another quantum barrier layer adjacent to the n-type nitride semiconductor layer.
Abstract:
A sensor-based teaching aid assembly includes: a plurality of teaching aid parts having a unique ID, detecting their location and adjacent teaching aid parts through an internal sensor, and transmitting result data to outside; and an information processing terminal displaying an image of an assembly target structure, analyzing the data received from the plurality of teaching aid parts to evaluate a completion degree of the structure assembled by the plurality of teaching aid parts, and displaying the evaluation results.
Abstract:
A carrier phase and symbol timing recovery circuit and method may be used for robust synchronization in a broadcasting ATSC receiving system. Carrier phase and symbol timing offsets may be simultaneously adjusted by using redundancy information contained in an ATSC signal spectrum. A desired sampling time instant and carrier phase offset for synchronization may be simultaneously obtained due to correlation between carrier phase and symbol timing detectors.
Abstract:
An activity monitoring system and method are disclosed to reduce the size of an activity sensor device to reduce its power consumption and smoothly transmit activity and occupancy information from the activity sensor device and an occupancy sensor device to an activity monitoring server to monitor an individual's activity and occupancy information. The activity monitoring system includes: an activity sensor device configured to detect a physical activity of a user, classify the detected physical activity, and transmit activity classification information as a result along with user identification information; one or more occupancy sensor devices configured to receive the activity classification information and the individual's identification information from the activity sensor device, and transmit the received information along with occupancy information; and an activity monitoring server configured to manage the activity classification information, the occupancy information, and the individual's identification information received from the occupancy sensor devices.
Abstract:
There are provided a hand-held device for detecting activities of daily living, and a system for detecting activities of daily living using the same. The hand-held device comprises a behavior information detector unit detecting physical activity information from user's movements; an article use information detector unit detecting article use information on whether the user uses the article from a sensor module attached to the article; a controller unit generating information on activities of daily living of the user from the physical activity information and the article use information; and a memory unit storing the information on the activities of daily living of the user.