摘要:
The present invention provides a method for manufacturing a semiconductor device as well as a semiconductor device. The method, among other steps, may include forming a gate structure over a substrate, and forming a strain inducing sidewall spacer proximate a sidewall of the gate structure, the strain inducing sidewall configured to introduce strain in a channel region below the gate structure.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
A sidewall spacer pullback scheme is implemented in forming a transistor. The scheme, among other things, allows silicide regions of the transistor to be made larger, or rather have a larger surface area. The larger surface area has a lower resistance and thus allows voltages to be applied to the transistor more accurately. The scheme also allows transistors to be made slightly thinner so that the formation of voids in a layer of dielectric material formed over the transistors is mitigated. This mitigates yield loss by facilitating more predictable or otherwise desirable transistor behavior.
摘要:
A method for semiconductor processing is provided, wherein a removal of one or more layers is aided by structurally weakening the one or more layers via ion implantation. A semiconductor substrate is provided having one or more primary layers formed thereon, and a secondary layer is formed over the one or more primary layers. One or more ion species are implanted into the secondary layer, therein structurally weakening the secondary layer, and a patterned photoresist layer is formed over the secondary layer. Respective portions of the secondary layer and the one or more primary layers that are not covered by the patterned photoresist layer are removed, and the patterned photoresist layer is further removed. At least another portion of the secondary layer is removed, wherein the structural weakening of the secondary layer increases a removal rate of the at least another portion of the secondary layer.
摘要:
A sidewall spacer pullback scheme is implemented in forming a transistor. The scheme, among other things, allows silicide regions of the transistor to be made larger, or rather have a larger surface area. The larger surface area has a lower resistance and thus allows voltages to be applied to the transistor more accurately. The scheme also allows transistors to be made slightly thinner so that the formation of voids in a layer of dielectric material formed over the transistors is mitigated. This mitigates yield loss by facilitating more predictable or otherwise desirable transistor behavior.
摘要:
A new MOS transistor is described. The transistor has a source/drain region that comprises 3 portions. Each portion is the result of a separate ion implant step. The combination of the three portions of the source/drain region yields a transistor of superior performance with high drive current, low sub-threshold current and gate-edge leakage.
摘要:
The present invention provides the method includes forming source/drain regions 170 in a semiconductor wafer substrate 110 adjacent a gate structure 130 located on a front side of the semiconductor wafer substrate 110. The source/drain regions 170 have a channel region 175 located between them. A first stress-inducing layer 190 is placed on a backside of the semiconductor wafer substrate 110 and is subjected to a thermal anneal to cause a stress to form in the channel region 175.
摘要:
A method of fabricating a transistor (10) comprises forming source and drain regions (46) and (47) using a first sidewall (42) and (43) as a mask and forming a deep blanket source and drain regions (54) and (56) using a second sidewall (50) and (51) as a mask, the second sidewall (50) and (51) comprising at least part of the first sidewall (42) and (43).
摘要:
A new MOS transistor is described. The transistor has a source/drain region that comprises 3 portions. Each portion is the result of an separate ion implant step. The combination of the three portions of the source/drain region yields a transistor of superior performance with high drive current, low sub-threshold current and gate-edge leakage.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the same. The method for manufacturing the semiconductor device, among other steps, includes forming a gate structure (230) over a substrate (210) and forming at least a portion of source/drain regions in the substrate (210). The method further includes annealing the substrate containing the at least a portion of source/drain regions in the presence of hydrogen, and forming an interlevel dielectric layer over the substrate (210) having previously been annealed in the presence of hydrogen.