Abstract:
The invention relates to sensor compositions comprising a composite array of individual arrays, to allow for simultaneous processing of a number of samples. The invention further provides methods of making and using the composite arrays. The invention further provides a hybridization chamber for use with a composite array.
Abstract:
The invention provides iterative methods of analyzing a target nucleic acid that represents a variant of a reference nucleic acid. An array of probes is designed to be complementary to an estimated sequence of a target nucleic acid. The array of probes is then hybridized to the target nucleic acid. The target sequence is reestimated from hybridization pattern of the array to the target nucleic acid. A further array of probes is then designed to be complementary to the reestimated sequence, and this array is used to obtain a further reestimate of the sequence of the target nucleic acid. By performing iterative cycles of array design and target sequence estimation, the estimated sequence of the target converges with the true sequence.
Abstract:
This invention provides nucleic acid affinity matrices that bear a large number of different nucleic acid affinity ligands allowing the simultaneous selection and removal of a large number of preselected nucleic acids from the sample Methods of producing such affinity matrices are also provided In general the methods involve the steps of a) providing a nucleic acid amplification template array comprising a surface to which are attached at least 50 oligonucleotides having different nucleic acid sequences, and wherein each different oligonucleotide is localized in a predetermined region of said surface, the density of said oligonucleotides is greater than about 60 different oligonucleotides per 1 cm2, and all of said different oligonucleotides have an identical terminal 3′ nucleic acid sequence and an identical terminal 5′ nucleic acid sequence b) amplifying said multiplicity of oligonucleotides to provide a pool of amplified nucleic acids, and c) attaching the pool of nucleic acids to a solid support
Abstract:
This invention provides oligonucleotide based arrays and methods for speciating and phenotyping organisms, for example, using oligonucleotide sequences based on the Mycobacterium tuberculosis rpoB gene. The groups or species to which an organism belongs may be determined by comparing hybridization patterns of target nucleic acid from the organism to hybridization patterns in a database.
Abstract:
Oligonucleotide analogue arrays attached to solid substrates and methods related to the use thereof are provided. The oligonucleotide analogues hybridize to nucleic acids with either higher or lower specificity than corresponding unmodified oligonucleotides. Target nucleic acids which comprise nucleotide analogues are bound to oligonucleotide and oligonucleotide analogue arrays.
Abstract:
This invention provides methods of monitoring the expression levels of a multiplicity of genes. The methods involve hybridizing a nucleic acid sample to a high density array of oligonucleotide probes where the high density array contains oligonucleotide probes complementary to subsequences of target nucleic acids in the nucleic acid sample. In one embodiment, the method involves providing a pool of target nucleic acids comprising RNA transcripts of one or more target genes, or nucleic acids derived from the RNA transcripts, hybridizing said pool of nucleic acids to an array of oligonucleotide probes immobilized on surface, where the array comprising more than 100 different oligonucleotides and each different oligonucleotide is localized in a predetermined region of the surface, the density of the different oligonucleotides is greater than about 60 different oligonucleotides per 1 cm2, and the olignucleotide probes are complementary to the RNA transcripts or nucleic acids derived from the RNA transcripts; and quantifying the hybridized nucleic acids in the array.
Abstract:
A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.