Abstract:
The invention provides methods of monitoring expression of a plurality of genes in a cell or small population of cells. Preferred methods entail contacting an array of probes with a population of nucleic acids derived from a population of fewer than 1000 cells then determining the relative hybridization of the probes to the population of nucleic acid as a measure of the relative representation of genes from the cells. The invention further provides methods of classifying cells. These preferred methods entail determining an expression profile of each of a plurality of cells then classifying the cells in clusters determined by similarity of expression profile. The invention further provides methods of monitoring differentiation of a cell lineage. These preferred methods entail determining an expression profile of each of a plurality of cells at different differentiation stages within the lineage. These cells can then be classified into clusters determined by similarity of expression profile. The clusters can then be ordered by similarity of expression profile. A time course of expression levels for each of the plurality of genes at different stages of differentiation in the cell lineage can then be determined.
Abstract:
The present invention provides methods and apparatus for sequencing, fingerprinting and mapping biological macromolecules, typically biological polymers. The methods make use of a plurality of sequence specific recognition reagents which can also be used for classification of biological samples, and to characterize their sources.
Abstract:
A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.
Abstract:
A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve light-directed spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protecting groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.
Abstract:
A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve light-directed spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protecting groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.
Abstract:
A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.
Abstract:
The present invention provides methods and apparatus for sequencing, fingerprinting and mapping biological macromolecules, typically biological polymers. The methods make use of a plurality of sequence specific recognition reagents which can also be used for classification of biological samples, and to characterize their sources.
Abstract:
A method for synthesizing oligonucleotides on a solid substrate. The method provides for the irradiation of a first predefined region of the substrate without irradiation of a second predefined region of the substrate. The irradiation step removes a protecting group therefrom. The substrate is contacted with a first nucleotide to couple the nucleotide to the substrate in the first predefined region. By repeating these steps, an array of diverse oligonucleotides is formed on the substrate.
Abstract:
A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group; is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.
Abstract:
A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.