Abstract:
Compositions useful in the delivery of active agents are provided. These delivery compositions include (a) an active agent; and (b) a carrier of at least one mono-C-substituted or di-C-substituted diketopiperazine. Methods for preparing these compositions and administering these compositions are also provided.
Abstract:
Modified amino acid compounds useful in the delivery of active agents are provided. The active agents can be peptides. Methods of administration, such as oral, subcutaneous, sublingual, and intranasal administration and methods of preparation of the modified amino acid compounds are also provided.
Abstract:
The present invention provides methods for administering an active agent to an animal in need of the agent by the pulmonary route. This method comprises administering via the pulmonary route, a composition comprising (a) an active agent and (b)(i) an acylated amino acid, (ii) a sulfonated amino acid, or (iii) a combination of (i) and (ii). Administration of the compositions of the present invention provide improved pulmonary delivery and greater bioavailability of the active agent than administration of the active agent alone. As a result, lesser amounts of the active agent may be administered to obtain a desired result when contained in the composition of the present invention than when administered alone.
Abstract:
Methods for transporting a biologically active agent across a cellular membrane or a lipid bilayer. A first method includes the steps of:(a) providing a biologically active agent which can exist in a native conformational state, a denatured conformational state, and an intermediate conformational state which is reversible to the native state and which is conformationally between the native and denatured states;(b) exposing the biologically active agent to a complexing perturbant to reversibly transform the biologically active agent to the intermediate state and to form a transportable supramolecular complex; and(c) exposing the membrane or bilayer to the supramolecular complex, to transport the biologically active agent across the membrane or bilayer. The perturbant has a molecular weight between about 150 and about 600 daltons, and contains at least one hydrophilic moiety and at least one hydrophobic moiety. The supramolecular complex comprises the perturbant non-covalently bound or complexed with the biologically active agent. In the present invention, the biologically active agent does not form a microsphere after interacting with the perturbant. A method for preparing an orally administrable biologically active agent comprising steps (a) and (b) above is also provided as are oral delivery compositions. Additionally, mimetics and methods for preparing mimetics are contemplated.
Abstract:
Modified amino acid compounds useful in the delivery of active agents are provided. Methods of administration and preparation are provided as well.
Abstract:
This invention provides an encapsulated fragrance in which the fragrance is controlled can be released by exposing the encapsulated fragrance to a solution of a predetermined pH. The invention also contemplates a process for preparing encapsulated fragrances.
Abstract:
The present invention relates to pulmonary delivery of active agents. Acylated or sufonated amino acids are used as carriers to facilitate pulmonary delivery of active agents to a target.
Abstract:
The present invention relates to methods and pharmaceutical formulations for orally delivering an antigen to induce tolerance. The antigen is combined with derivatized amino acids or salts thereof. The induction of oral tolerance may be applied clinically for the prevention or treatment of auto-immune diseases and clinical allergic hypersensitivities, and for the prevention of allograft rejection.
Abstract:
Carrier compounds, compositions, and dosage unit forms therefor which are useful in the delivery of active agents are provided. The present invention provides a compound having the formula: ##STR1## or a salt thereof, wherein the compound may be used in a composition or dosage unit form for delivery of at least one active agent, including a peptide, mucopolysaccharide, carbohydrate, or a lipid. Methods of administration and preparation of the compounds and compositions of the invention are provided as well, including oral administration. Further, the compositions of the invention may be prepared by mixing at least one active agent, at least one carrier compound, and, optionally, a dosing vehicle.
Abstract:
Improved proteinoid microspheres and methods for their preparation and use as oral delivery systems for pharmaceutical agents are described. The proteinoid microspheres are soluble within selected pH ranges within the gastrointestinal tract and display enhanced stability towards at least one of photolysis or decomposition over time. The proteinoid microspheres are prepared from proteinoids having between 2 and 8 amino acids and having a molecular weight of about 1000 daltons.